• Title/Summary/Keyword: distribution ratio(D)

Search Result 737, Processing Time 0.027 seconds

An Experimental Study on the Sorption of U(VI) onto Granite

  • Min-Hoon Baik;Pil-Soo Hahn
    • Nuclear Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.445-454
    • /
    • 2002
  • The sorption of U(Vl) on a domestic granite is studied as a function of experimental conditions such as contact time, solution-solid ratio, ionic strength, and pH using a batch procedure. The distribution coefficients, $K_{d}$'s, of U(VI) are about 1-100mL/g depending on the experimental conditions. The sorption of U(VI) onto granite particles is greatly dependent upon the contact time, solution-solid ratio, and pH, but very little is dependent on the ionic strength. It is noticed that an U(VI)-carbonate ternary surface complex can be formed in the neutral range of pH. In the alkaline range of pH above 7, U(VI) sorption onto granite particles is greatly decreased due to the formation of anionic U(VI)-carbonate aqueous complexes.s.

Prediction of Defibrillation Success of Ventricular Fibrillation ECG Signals using Time-Frequency Analysis (시-주파수 분석을 이용한 심실세동시 심전도 분석을 통한 제세동 예측에 관한 연구)

  • Sung, Hong-Mo;Shin, Jae-Woo;Lee, Hyun-Sook;Hwang, Sung-Ho;Yoon, Young-Ro
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.4
    • /
    • pp.181-188
    • /
    • 2006
  • The purpose of this study is to predict the defibrillation success of a ventricular Fibrillation ECG signal using time-frequency analysis. During CPR, coronary perfusion pressure and electrocardiogram were measured. Parameters extracted from time-frequency domain were served as predictor of resuscitation success. Time frequency distribution(TFD) of ECG signals was estimated from the smoothed pseudo Wigner-Ville distribution(SPWVD). Median frequency, peak frequency, 1/f slope, frequency band ratios$(2{\sim}4Hz,\;4{\sim}6Hz,\;6{\sim}8Hz,\;8{\sim}10Hz,\;10{\sim}12Hz,\;12{\sim}15Hz)$ were extracted from each TFD as function of time. Paired t-test was used to determine the differences in ROSC and non-ROSC groups. In the statistical results, we selected four significant parameters - median frequency, 1/f slope, $2{\sim}4Hz$ band ratio, $8{\sim}10Hz$ band ratio. We made an attempt to predict defibrillation success by combining features extracted from time frequency distribution. Independent t-test was used to determine the differences ROSC and non-ROSC groups. Consequently, we selected four significant parameters-median frequency, 1/f slope, $2{\sim}4Hz$ band ratio, $8{\sim}10Hz$ band ratio. The relationship between coronary perfusion pressure and ECG parameters was analyzed with linear regression analysis. R-square value was 55%. 1/f slope and $8{\sim}10Hz$ band ratio had the significant relationship with coronary perfusion pressure.

Numerical Analysis of Flow Characteristics around 3D Supersonic Inlet at Various Angle of Attack (받음각이 있는 3차원 초음속 흡입구 주위의 유동진동 해석)

  • Kim, J.;Hong, W.;Kim, C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.218-224
    • /
    • 2011
  • A supersonic inlet at angle of attack has anti-symmetric pressure distribution, and it can make flow instability and structural problem. In this study, numerical analysis of three-dimensional inviscid flow was conducted under various throttle ratio and angle of attack conditions. Throttle ratio was defined as the ratio of the exit area to the smallest cross section area at inlet, and the ratio is controlled from 0 to 2.42. At various angle of attack, the characteristics of steady and unsteady flow around supersonic inlet is observed under different throttling ratios. From these results, pressure recovery curves and pressure history curves were plotted by post processing. Using pressure history data, FFT analysis is also carried out. Through these processes, it shows the tendency of pressure distribution anti-symmetricity and changing dominant frequency as increasing angle of attack.

  • PDF

The Distribution of Dictyostelids Cellular Slime Molds in Gokneung and Anyang Streamside and Effects of Environmental Factors on Its Distribution (하천(곡릉천,안양천)변 토양에서 세포성 점균의 분포 및 토양 환경요인의 영향)

  • 권혜련;장남기
    • Asian Journal of Turfgrass Science
    • /
    • v.10 no.3
    • /
    • pp.195-211
    • /
    • 1996
  • Dictyostelids cellular slime molds were isolated from the soils of Gokneung and Anyang streamside in Korea. The fifteen species including two undescrihed species were identified. These were as follows ; Dictyostelium macrocephalurn D. sphaerocephalum, D. aureum var. aureum, D.mucoroides, D. minutum, Polyspondyium pallidum. D. giganteum, P. violaceum. D. purpureum. D.brefeldianum, D. flavidum, D. mucoroides var. storoniferum, D. septentrionalis, D. aureum var. luteolum,D. aureo-stipes var. aureo-stipes. D. macrocephalum was the dominant species. and D. sphaerocephalum. D. aureum var. avreum were relatively common. D. mucoroides var. storoniferum, D. septentrionalis were the undescrihed species in Korea. In the soils of streamside, dominant species was shifted by D. macrosephalum, D. sphaerocephalum. which were rare in the forest soils. The total clones per gram of streamside soils were greater than that of forest soils, whereas the number of species in streamside was smaller than the in forest soils. As a result, the ratio of the number of clones to species was very high in the soils of streamside, Environmental factors of soil pH, water content, organic content, total nitrogen and total phosphorus made a effect differently on the cellular slime molds community. Key words: Cellular slime molds, D. macrocephalum, D. sphaerocephalum, Shift of dominant species, Environmental factors.

  • PDF

A numerical analysis and experimental study on the prediction of spray characteristics (분무특성 예측을 위한 이론적 접근과 실험적 연구)

  • Yoon, S.J.;Cho, D.J.
    • Journal of ILASS-Korea
    • /
    • v.3 no.2
    • /
    • pp.1-13
    • /
    • 1998
  • A theoretical and experimental study was carried out to predict the drop size distribution of the pressure swirl atomizer. Various analytical methods using the Kelvin-Helmholtz instability theory were tried to examine the wave growth on cylindrical liquid sheets. Cylinderical liquid sheets were extended to the case with the conical sheets. Perturbations due to tangential motion as well as longitudinal one were taken into account. And it was assumed that the breakup occurs when amplitude ratio exceeds exp(12), drop sizes were predicted only by theoretical approach. Drop size distribution was obtained by using maximum entropy formalism. Seven constraints in the form of the definition of mean diameter were used in this formulation in order to avoid the difficulties of estimating source terms. In this study $D_{10}$ only was introduced into the formulation as a constraint. The predicted drop size and drop size distribution agreed well with the measured data.

  • PDF

Factorization of the Jet Mass Distribution in the Small R Limit

  • Idilbi, Ahmad;Kim, Chul
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1230-1239
    • /
    • 2018
  • We derive a factorization theorem for the jet mass distribution with a given $p^J_T$ for the inclusive production, where $p^J_T$ is a large jet transverse momentum. Considering the small jet radius limit ($R{\ll}1$), we factorize the scattering cross section into a partonic cross section, the fragmentation function to a jet, and the jet mass distribution function. The decoupled jet mass distributions for quark and gluon jets are well-normalized and scale invariant, and they can be extracted from the ratio of two scattering cross sections such as $d{\sigma}/(dp^J_TdM^2_J)$ and $d{\sigma}/dp^J_T $. When $M_J{\sim}p^J_TR$, the perturbative series expansion for the jet mass distributions works well. As the jet mass becomes small, large logarithms of $M_J/(p^J_TR)$ appear, and they can be systematically resummed through a more refined factorization theorem for the jet mass distribution.

Chloride diffusivity of concrete: probabilistic characteristics at meso-scale

  • Pan, Zichao;Ruan, Xin;Chen, Airong
    • Computers and Concrete
    • /
    • v.13 no.2
    • /
    • pp.187-207
    • /
    • 2014
  • This paper mainly discusses the influence of the aggregate properties including grading, shape, content and distribution on the chloride diffusion coefficient, as well as the initiation time of steel corrosion from a probabilistic point of view. Towards this goal, a simulation method of random aggregate structure (RAS) based on elliptical particles and a procedure of finite element analysis (FEA) at meso-scale are firstly developed to perform the analysis. Next, the chloride diffusion coefficient ratio between concrete and cement paste $D_{app}/D_{cp}$ is chosen as the index to represent the effect of aggregates on the chloride diffusion process. Identification of the random distribution of this index demonstrates that it can be viewed as actually having a normal distribution. After that, the effect of aggregates on $D_{app}/D_{cp}$ is comprehensively studied, showing that the appropriate properties of aggregates should be decided by both of the average and the deviation of $D_{app}/D_{cp}$. Finally, a case study is conducted to demonstrate the application of this mesoscopic method in predicting the initiation time of steel corrosion in reinforced concrete (RC) structures. The mesoscopic probabilistic method developed in this paper can not only provide more reliable evidences on the proper grading and shape of aggregates, but also play an important role in the probability-based design method.

Effect of Various Parameters on Stress Distribution around Holes in Mechanically Fastened Composite Laminates (기계적으로 체결된 복합재료 평판에서 다양한 인자의 영향에 따른 원공 주위의 응력분포)

  • Choi Jae-Min;Chun Heoung-Jae;Byun Joon-Hyung
    • Composites Research
    • /
    • v.18 no.6
    • /
    • pp.9-18
    • /
    • 2005
  • With the wide applications of fiber-reinforced composite material in aero-structures and mechanical parts, the design of composite joints have become a very important research area because the joints are often the weakest areas in composite structures. This paper presents an analytical study of the stress distributions in mechanically single-fastened and multi-fastened composite laminates. The finite element models which treat the pin and hole contact problem using a contact stress analysis are described. A dimensionless stress concentration factor is used to compare the stress distributions in composite laminates quantitatively In the case of single-pin loaded composite laminate, the effects of stacking sequence, the ratio of a hole diameter and the width of a laminate (W/D ratio), the ratio of hole diameter and distance from edge to hole (E/D ratio), friction coefficient and clamping force are considered. In the case of multi-pin loaded composite laminate, the influence of the number of pins, pitch distance, number of rows, row spacing and hole pattern are considered. The results show that P/D ratio and E/D ratio affect more on stress distributions near the hole boundary than the other factors. In the case of multi-pin loaded composite laminate, the stress concentration in the double column case is better than the other cases of multi-pin loaded composite laminate.

The Characteristics and Biomass Distribution in Crown of Larix olgensis in Northeastern China

  • Chen, Dongsheng;Li, Fengri
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.2
    • /
    • pp.204-212
    • /
    • 2010
  • This study was performed in 22 unthinned Larix olgensis plantations in northeast China. Data were collected on 95 sample trees of different canopy positions and the diameter at breast height ($d_{1.3}$) ranged from 5.7 cm to 40.2 cm. The individual tree models for the prediction of vertical distribution of live crown, branch and needle biomass were built. Our study showed that the crown, branch and needle biomass distributions were most in the location of 60% crown length. These results were also parallel to previous crown studies. The cumulative relative biomass of live crown, branch and needle were fitted by the sigmoid shape curve and the fitting results were quite well. Meanwhile, we developed the crown ratio and width models. Tree height was the most important predictor for crown ratio model. A negative competition factor, ccf and bas which reflected the effect of suppression on a tree, reduced the crown ratio estimates. The height-diameter ratio was a significant predictor. The higher the height-diameter ratio, the higher crown ratio is. Diameter at breast height is the strongest predictor in crown width model. The models can be used for the planning of harvesting operations, for the selection of feasible harvesting methods, and for the estimation of nutrient removals of different harvesting practices.

Fouling analysis and biomass distribution on a membrane bioreactor under low ratio COD/N

  • Gasmi, Aicha;Heran, Marc;Hannachi, Ahmed;Grasmick, Alain
    • Membrane and Water Treatment
    • /
    • v.6 no.4
    • /
    • pp.263-276
    • /
    • 2015
  • This paper deals with the influence of chemical oxygen demand to nitrogen ratio ((COD/N) ratio) on the performance of an membrane bioreactor. We aim at establishing relations between COD/N ratio, organisms' distribution and sludge properties (specific resistance to filtration (SRF) and membrane fouling). It is also essential to define new criteria to characterize the autotrophic microorganisms, as the measurements of apparent removal rates of ammonium seem irrelevant to characterize their specific activity. Two experiments (A and B) have been carried on a 30 L lab scale membrane bioreactor with low COD/N ratio (2.3 and 1.5). The obtained results clearly indicate the role of the COD/N ratio on the biomass distribution and performance of the membrane bioreactor. New specific criteria for characterising the autotrophic microorganisms activity, is also defined as the ratio of maximum ammonium rate to the specific oxygen uptake rate in the endogenous state for autotrophic bacteria which seem to be constant whatever the operating conditions are. They are about 24.5 to 23.8 $gN-NH_4{^+}/gO_2$, for run A and B, respectively. Moreover, the filterability of the biological suspension appear significantly lower, specific resistance to filtration and membrane fouling rate are less than $10^{14}m^{-2}$ and $0.07\;10^{12}m^{-1}.d^{-1}$ respectively, than in conventional MBR confirming the adv < antage of the membrane bioreactor functioning under low COD/N ratio.