• Title/Summary/Keyword: distribution pattern

Search Result 3,785, Processing Time 0.032 seconds

Classifications by Materials and Physical Characteristics for Neolithic Pottery from Jungsandong Site in Yeongjong Island, Korea (영종도 중산동 신석기시대 토기의 재료학적 분류와 물리적 특성)

  • Kim, Ran Hee;Lee, Chan Hee;Shin, Sook Chung
    • Korean Journal of Heritage: History & Science
    • /
    • v.50 no.4
    • /
    • pp.122-147
    • /
    • 2017
  • The Jungsandong sites are distributed across quartz and mica schist formations in Precambrian, and weathering layers include large amounts of non-plastic minerals such as mica, quartz, felspar, amphibole, chlorite and so on, which form the ground of the site. Neolithic pottery from Jungsandong exhibits various brown colors, and black core is developed along the inner part for some samples, and sharp comb-pattern and hand pressure marks can be observed. Their non-plastic particles have various composition, size distribution, sorting and roundness, so they are classified into four types by their characteristic mineral compositions. I-type (feldspar pottery) is including feldspar as the pain component or mica and quartz. II-type (mica pottery) is the combination of chloritized mica, talc, tremolite and diopside. III-type (talc pottery) is with a very small amount of quartz and mica. IV-type (asbestos pottery) is containing tremolite and a very small amount of talc. The inner and outer colors of Jungsandong pottery are somewhat heterogeneous. I-type pottery group shows differences in red and yellow degree, depending on the content of feldspar, and is similar to III-type pottery. II-type is similar to IV-type, because its red degree is somewhat high. The soil of the site is higher in red and yellow degree than pottery from it. The magnetic susceptibility has very wide range of 0.088 to 7.360(${\times}10^{-3}$ SI unit), but is differentiated according to minerals, main components in each type. The ranges of bulk density and absorption ratio of pottery seem to be 1.6 to 1.7 and 13.1 to 26.0%, respectively. Each type of pottery shows distinct section difference, as porosity and absorption ratio increase in the order as follows: I-type (organic matter fixed sample) < III-type and IV-type < I-type < II-type (including IV-type of IJP-15). The reason is that differences in physical property occur according to kind and size of non-plastic particles. Although Jungsandong pottery consists of mixtures of various materials, the site pottery has a geological condition on which all mineral composition of Jungsandong pottery can be provided. There, it is thought that raw materials can be supplied from weathered zone of quartz and mica schist, around the site. However, different constituent minerals, size and rock fragments are shown, suggesting the possibility that there can be more raw material pits. Thus, it is estimated that there may be difference in clay and weathering degree.

A Study on the Structure and Function of the Underground Storage Facility in Baekje (백제 지하저장시설(地下貯藏施設)의 구조와 기능에 대한 검토)

  • Shin, Jong-Kuk
    • Korean Journal of Heritage: History & Science
    • /
    • v.38
    • /
    • pp.129-156
    • /
    • 2005
  • Increasing discovery cases of underground storage facilities made of earth, wood, or stone are being reported from the recent excavation survey of the Baekje relics. Accordingly, the purpose of this study is to examine the structure and function of the underground storage facilities of Baekje following a classification made by the type and building method as follows: plask shape, wooden box shape, and stone box shape. The plask shape storage is the most representative underground storage of Baekje that has been found in numerous relics more than 600 sets around Hangang(Han River) and Geumgang(Geum River) from the Hansung period to Sabi period in Baekje Dynasty. It is a historical artefact as a part of the unique storage culture of Baekje around Hangang and Geumgang from the 3rd to 7th Century. Considering its structure and the example of Chinese one, it might had been used for a long-term storage of grains and various other items including earth wares. The storage facility in wooden box shape and stone box shape are found mostly in the relics Of Sabi period. Thus it might had taken some functions of the storage in traditional pouch shape which had decreased after the 6th Century. In particular, the wooden box shape and stone box shape storage required enormous labor force to build owing to their structure and building method. Thus, they were considered to had been used for official purposes in province fortress and citadel artefact. The wooden box shape storage facility is classified into flat rectangular type and square type based on the structure, and into Gagu type(架構式) and Juheol type(柱穴式) based on the building method. It might had been decided according to the geography and geological feature of the place where the storage was to be built. Considering the examples of Gwanbuk-ri relics and Weolpyong-dong relics, the wooden box shape storage facility might had been used for various items depending on the needs, including foods such as fruits and essential provisions at the military base. Considering the long-term food storage, the examples in Japan, and the functional characteristics of the underground storage facility, there is a possibility that the wooden and stone box shape storage facilities had been built so as to safely store important items in case of fire. This study is only a rudimentary examination for the storage facility in Baekje. Thus further studies are to be made specifically and comprehensively on the comparison with other regions, distribution pattern, discovered relics and artefacts, and functions.

The inference about the cause of death of Korean Fir in Mt. Halla through the analysis of spatial dying pattern - Proposing the possibility of excess soil moisture by climate changes - (한라산 구상나무 공간적 고사패턴 분석을 통한 고사원인 추정 - 기후변화에 따른 토양수분 과다 가능성 제안 -)

  • Ahn, Ung San;Kim, Dae Sin;Yun, Young Seok;Ko, Suk Hyung;Kim, Kwon Su;Cho, In Sook
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.1
    • /
    • pp.1-28
    • /
    • 2019
  • This study analyzed the density and mortality rate of Korean fir at 9 sites where individuals of Korean firs were marked into the live and dead trees with coordinates on orthorectified aerial images by digital photogrammetric system. As a result of the analysis, Korean fir in each site showed considerable heterogeneity in density and mortality rate depending on the location within site. This make it possible to assume that death of Korean fir can occur by specific factors that vary depending on the location. Based on the analyzed densities and mortality rates of Korea fir, we investigated the correlation between topographic factors such as altitude, terrain slope, drainage network, solar radiation, aspect and the death of Korean fir. The density of Korean fir increases with altitude, and the mortality rate also increases. A negative correlation is found between the terrain slope and the mortality rate, and the mortality rate is higher in the gentle slope where the drainage network is less developed. In addition, it is recognized that depending on the aspect, the mortality rate varies greatly, and the mean solar radiation is higher in live Korean fir-dominant area than in dead Korean fir-dominant area. Overall, the mortality rate of Korean fir in Mt. Halla area is relatively higher in areas with relatively low terrain slope and low solar radiation. Considering the results of previous studies that the terrain slope has a strong negative correlation with soil moisture and the relationship between solar radiation and evaporation, these results lead us to infer that excess soil moisture is the cause of Korean fir mortality. These inferences are supported by a series of climate change phenomena such as precipitation increase, evaporation decrease, and reduced sunshine duration in the Korean peninsula including Jeju Island, increase in mortality rate along with increased precipitation according to the elevation of Mt. Halla and the vegetation change in the mountain. It is expected that the spatial patterns in the density and mortality rate of Korean fir, which are controlled by topography such as altitude, slope, aspect, solar radiation, drainage network, can be used as spatial variables in future numerical modeling studies on the death or decline of Korean fir. In addition, the method of forest distribution survey using the orthorectified aerial images can be widely used as a numerical monitoring technique in long - term vegetation change research.

Estimation of freeze damage risk according to developmental stage of fruit flower buds in spring (봄철 과수 꽃눈 발육 수준에 따른 저온해 위험도 산정)

  • Kim, Jin-Hee;Kim, Dae-jun;Kim, Soo-ock;Yun, Eun-jeong;Ju, Okjung;Park, Jong Sun;Shin, Yong Soon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.1
    • /
    • pp.55-64
    • /
    • 2019
  • The flowering seasons can be advanced due to climate change that would cause an abnormally warm winter. Such warm winter would increase the frequency of crop damages resulted from sudden occurrences of low temperature before and after the vegetative growth stages, e.g., the period from germination to flowering. The degree and pattern of freezing damage would differ by the development stage of each individual fruit tree even in an orchard. A critical temperature, e.g., killing temperature, has been used to predict freeze damage by low-temperature conditions under the assumption that such damage would be associated with the development stage of a fruit flower bud. However, it would be challenging to apply the critical temperature to a region where spatial variation in temperature would be considerably high. In the present study, a phenological model was used to estimate major bud development stages, which would be useful for prediction of regional risks for the freeze damages. We also derived a linear function to calculate a probabilistic freeze risk in spring, which can quantitatively evaluate the risk level based solely on forecasted weather data. We calculated the dates of freeze damage occurrences and spatial risk distribution according to main production areas by applying the spring freeze risk function to apple, peach, and pear crops in 2018. It was predicted that the most extensive low-temperature associated freeze damage could have occurred on April 8. It was also found that the risk function was useful to identify the main production areas where the greatest damage to a given crop could occur. These results suggest that the freezing damage associated with the occurrence of low-temperature events could decrease providing early warning for growers to respond abnormal weather conditions for their farm.

Comparison of rainfall-runoff performance based on various gridded precipitation datasets in the Mekong River basin (메콩강 유역의 격자형 강수 자료에 의한 강우-유출 모의 성능 비교·분석)

  • Kim, Younghun;Le, Xuan-Hien;Jung, Sungho;Yeon, Minho;Lee, Gihae
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.2
    • /
    • pp.75-89
    • /
    • 2023
  • As the Mekong River basin is a nationally shared river, it is difficult to collect precipitation data, and the quantitative and qualitative quality of the data sets differs from country to country, which may increase the uncertainty of hydrological analysis results. Recently, with the development of remote sensing technology, it has become easier to obtain grid-based precipitation products(GPPs), and various hydrological analysis studies have been conducted in unmeasured or large watersheds using GPPs. In this study, rainfall-runoff simulation in the Mekong River basin was conducted using the SWAT model, which is a quasi-distribution model with three satellite GPPs (TRMM, GSMaP, PERSIANN-CDR) and two GPPs (APHRODITE, GPCC). Four water level stations, Luang Prabang, Pakse, Stung Treng, and Kratie, which are major outlets of the main Mekong River, were selected, and the parameters of the SWAT model were calibrated using APHRODITE as an observation value for the period from 2001 to 2011 and runoff simulations were verified for the period form 2012 to 2013. In addition, using the ConvAE, a convolutional neural network model, spatio-temporal correction of original satellite precipitation products was performed, and rainfall-runoff performances were compared before and after correction of satellite precipitation products. The original satellite precipitation products and GPCC showed a quantitatively under- or over-estimated or spatially very different pattern compared to APHPRODITE, whereas, in the case of satellite precipitation prodcuts corrected using ConvAE, spatial correlation was dramatically improved. In the case of runoff simulation, the runoff simulation results using the satellite precipitation products corrected by ConvAE for all the outlets have significantly improved accuracy than the runoff results using original satellite precipitation products. Therefore, the bias correction technique using the ConvAE technique presented in this study can be applied in various hydrological analysis for large watersheds where rain guage network is not dense.

Analysis of Tree Growth Characteristics by First and Second Thinning in Korean White Pine Plantations (잣나무 인공림의 1차 및 2차 간벌에 따른 입목생장 특성 분석)

  • Lee, Daesung;Jung, Sunghoon;Choi, Jungkee
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.1
    • /
    • pp.150-164
    • /
    • 2022
  • This study was conducted to provide basic information for the development of silvicultural guidelines and manuals. This was achieved through analysis of tree and stand characteristics according to the first and second thinning in Korean white pine plantations. Data were collected from permanent plots installed at Korean white pine plantations according to thinning intensity, and residual tree and stand variables, including diameter at breast height (DBH), volume, and mortality at age 19-43, were analyzed using data repeatedly collected in 4-5 measurements by experiments. According to one-way variance of analysis, tree DBH and volume were significantly different according to thinning intensity (p<0.05). DBH distribution was skewed to the left side over time as thinning intensity was heavier. Thus, tree DBH values were larger in heavy thinning plots with increased age. The periodic annual increment (PAI) of DBH was higher with heavier thinning intensity and fewer years after thinning. The PAI range by thinning intensity was 0.48-0.95 cm/year at age 19-24. In addition, the PAI increased in heavy thinning plots after the second thinning; The PAI range by thinning intensity was 0.29-0.67 cm/year after the second thinning at age 37-42. The PAI of tree volume differed according to thinning intensity, and the PAI value did not decrease obviously, in contrast to the pattern of the DBH PAI. Stand volume was generally higher in high-density stands, and the PAI of stand volume was high in unthinned and light thinning plots. Mortality was highest in unthinned plots, and the differences in mortality according to thinning intensity increased over time. Consequently, the growth of DBH and tree volume was lower as stand density increased, but this growth was facilitated with appropriate first and second thinning operations.

Characteristics of Marine Algal Communities in Village Fishing Grounds Near Large Wildfires in Uljin-gun (울진군 대형산불 발생 인근 마을어장의 해조류 군집 특성)

  • Jeong Hee Shim;Hee Chan Choi;Hae-Kun Jung;Jong-Ku Gal;Jeong-Min Shim;Sung-Eic Hong;Chul-Hui Kwoun;Sang-Woo Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.2
    • /
    • pp.87-97
    • /
    • 2023
  • In this study, we examined the effects of a large wildfire in the coastal area of Uljin-gun. The analysis of water quality and the dominant species, species composition, and community structure of marine algal was conducted quarterly in 2022 at Nagok (F-1), Hujeong (F-2), Bongpyeong (F-3), and Gongse Port (F-C) in Uljin-gun. As a result of water quality analysis, the pH, a factor of wildfire impact was 8.07~8.30 and 8.12~8.48 in surface and bottom layers, respectively, which are normal values in coastal waters of the East Sea, suggesting no direct impact from wildfires. By marine algal species composition, the coastal areas show the following order: Rhodophyta (58.1%) > Ochrophyta (25.8%) > Chlorophyta (14.5%) > Magnoliophyta (1.6%). By season, Undaria pinnatifida was the most dominant at Nagok and Hujeong in March and June, which in September and November, Gelidium elegans and Lithophyllum sp. were the most dominant in Bongpyeong and Gongse Port, respectively. In the cluster analysis, the stations were divided into two groups according to presence and absence of specific marine algal by season. The dominant species were U. pinnatifida, G. elegans and D. divaricata in group A, and Lithophyllum sp. was mainly present in group B. Thus, the species composition and group structure reflected the normal seasonal change pattern with water temperature variation and showed little significant difference from the control site, suggesting no direct effects of the wildfire on algae distribution in Uljin.

Investigating Data Preprocessing Algorithms of a Deep Learning Postprocessing Model for the Improvement of Sub-Seasonal to Seasonal Climate Predictions (계절내-계절 기후예측의 딥러닝 기반 후보정을 위한 입력자료 전처리 기법 평가)

  • Uran Chung;Jinyoung Rhee;Miae Kim;Soo-Jin Sohn
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.2
    • /
    • pp.80-98
    • /
    • 2023
  • This study explores the effectiveness of various data preprocessing algorithms for improving subseasonal to seasonal (S2S) climate predictions from six climate forecast models and their Multi-Model Ensemble (MME) using a deep learning-based postprocessing model. A pipeline of data transformation algorithms was constructed to convert raw S2S prediction data into the training data processed with several statistical distribution. A dimensionality reduction algorithm for selecting features through rankings of correlation coefficients between the observed and the input data. The training model in the study was designed with TimeDistributed wrapper applied to all convolutional layers of U-Net: The TimeDistributed wrapper allows a U-Net convolutional layer to be directly applied to 5-dimensional time series data while maintaining the time axis of data, but every input should be at least 3D in U-Net. We found that Robust and Standard transformation algorithms are most suitable for improving S2S predictions. The dimensionality reduction based on feature selections did not significantly improve predictions of daily precipitation for six climate models and even worsened predictions of daily maximum and minimum temperatures. While deep learning-based postprocessing was also improved MME S2S precipitation predictions, it did not have a significant effect on temperature predictions, particularly for the lead time of weeks 1 and 2. Further research is needed to develop an optimal deep learning model for improving S2S temperature predictions by testing various models and parameters.

Anti-tumor and Anti-inflammatory Effects of Ecklonia cava in CT26 Tumor-bearing BALB/cKorl Syngeneic Mice (CT26 고형암을 내포하는 BALB/cKorl Syngeneic 마우스에서 Ecklonia cava의 항암효과 및 항염증효과)

  • Yu Jeong Roh;Ji Eun Kim;You Jeong Jin;Ayun Seol;Hee Jin Song;Tae Ryeol Kim;Kyeong Seon Min;Eun Seo Park;Ki Ho Park;Dae Youn Hwang
    • Journal of Life Science
    • /
    • v.33 no.11
    • /
    • pp.887-896
    • /
    • 2023
  • The inflammatory response have been considered as one of important targets for cancer treatment because they play a key role during all steps of tumor development including initiation, promotion, malignant conversion and progression. To investigate the anti-inflammatory response during anti-tumor activity of an aqueous extracts of Ecklonia cava (AEC), alterations on the distribution of mast cells and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), nuclear factor (NF)-κB, inflammasome compositional protein and inflammatory cytokines were examined in CT26 colon tumor-bearing BALB/cKorl syngeneic mice after administrating AEC for five weeks. After treatment of AEC, total weight of tumor and necrotic region of tumor section were significantly decreased compared to vehicle treated group. The number of infiltered mast cells was higher in AEC treated group than vehicle treated group, while the expression levels of COX-2 and iNOS were decreased in AEC treated group. Also, similar decrease pattern were detected in the expression levels of NF-κB, NLR family pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and caspase-1 (Cas-1) after AEC treatment although the decrease rate was varied. Furthermore, the mRNA expressions of three inflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin-1α (IL-1α) and interleukin-6 (IL-6) were remarkably decreased in AEC treated group compared to vehicle treated group. These results suggest that inhibition of inflammatory response may be tightly associated with anti-tumor activity of AEC in CT26 colon tumor-bearing BALB/cKorl syngeneic mice.

Development of Cloud Detection Method Considering Radiometric Characteristics of Satellite Imagery (위성영상의 방사적 특성을 고려한 구름 탐지 방법 개발)

  • Won-Woo Seo;Hongki Kang;Wansang Yoon;Pyung-Chae Lim;Sooahm Rhee;Taejung Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1211-1224
    • /
    • 2023
  • Clouds cause many difficult problems in observing land surface phenomena using optical satellites, such as national land observation, disaster response, and change detection. In addition, the presence of clouds affects not only the image processing stage but also the final data quality, so it is necessary to identify and remove them. Therefore, in this study, we developed a new cloud detection technique that automatically performs a series of processes to search and extract the pixels closest to the spectral pattern of clouds in satellite images, select the optimal threshold, and produce a cloud mask based on the threshold. The cloud detection technique largely consists of three steps. In the first step, the process of converting the Digital Number (DN) unit image into top-of-atmosphere reflectance units was performed. In the second step, preprocessing such as Hue-Value-Saturation (HSV) transformation, triangle thresholding, and maximum likelihood classification was applied using the top of the atmosphere reflectance image, and the threshold for generating the initial cloud mask was determined for each image. In the third post-processing step, the noise included in the initial cloud mask created was removed and the cloud boundaries and interior were improved. As experimental data for cloud detection, CAS500-1 L2G images acquired in the Korean Peninsula from April to November, which show the diversity of spatial and seasonal distribution of clouds, were used. To verify the performance of the proposed method, the results generated by a simple thresholding method were compared. As a result of the experiment, compared to the existing method, the proposed method was able to detect clouds more accurately by considering the radiometric characteristics of each image through the preprocessing process. In addition, the results showed that the influence of bright objects (panel roofs, concrete roads, sand, etc.) other than cloud objects was minimized. The proposed method showed more than 30% improved results(F1-score) compared to the existing method but showed limitations in certain images containing snow.