• Title/Summary/Keyword: distribution of salt intrusion

Search Result 9, Processing Time 0.025 seconds

The Study of Salinity Distribution at Nakdong River Estuary (낙동강 하구 염분 농도 분포에 관한 연구)

  • Han, Chong-Soo;Park, Sang-Kil;Jung, Sang-Woo;Roh, Tae-Young
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.1
    • /
    • pp.101-108
    • /
    • 2011
  • The purpose of salinity intrusion due to numerical simulation is analaysis for saline intrusion to the upstream channel in Nakdong River Estuary Barrage(NREB) to get enough fresh water. Conditions that occur salinity intrusion affect by tidal distribution at seas, so salinity concentration changes according to tidal phenomenon. Making this connection cleary can help preventing salinity intrusion. In this study, estimating salinity intrusion to the upstream channel in NREB using EOMSED model, we reexamine NREB's existence. Comparison is also made with observing data. In result, when inflow discharges at $75m^3/s$ is more similar with respect to observing data than $130m^3/s$ at ECOMSED model. Thus, estimations are more precise at little discharges than lots of discharges.

Saltwater Intrusion Characteristics in Seomjin River Estuary using EFDC (3차원 수치모델을 이용한 섬진강 하구역의 염수침입 특성)

  • KANG, Bo-Sik;PARK, Hyo-Bong;KIM, Jong-Kyu
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.6
    • /
    • pp.1842-1853
    • /
    • 2015
  • The behavior characteristics of the saltwater intrusion in the Seomjin River Estuary by the inflow of fresh water were analysed by the field observation using CTD in the neap tide in January, June, and August 2013 as well as a numerical model, EFDC (Environmental Fluid Dynamics Code). As a result, Seomjin River Estuary is found that the saltwater intrusion is sensitive to the tide and tidal and freshwater flow. The results of field observation and numerical model were similar in the range of salt, but the results of salt wedge distribution were quite different. The observation of tide and tidal current as well as hydrographic surveying the Seomjin River Estuary will be jointly conducted for the accurate analysis.

Relation of Freshwater Discharge and Salinity Distribution on Tidal Variation around the Yeomha Channel, Han River Estuary (한강하구 염하수로 주변의 조석변화에 따른 염분분포와 담수와의 상관관계)

  • Yoon, Byung-Il;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.4
    • /
    • pp.269-276
    • /
    • 2012
  • Salinity distribution in estuary and tidal river is presented by many parameters including tidal forcing, river discharge and geographical effect. Understanding the characteristics of salinity structure is very important in the aspect of water-quality, ecological, and engineering viewpoint. Field measurement was carried out to study the distribution of salinity structure at 2 surface stations at Yeomha channel in the Han River estuary. The results of short- and long-term salinity change according to short and long tidal variability is investigated. For analyzing the axial salinity distribution at Yeomha channel, the salinity data from NFRDI is used in this study. The relationship between freshwater discharge and salinity distribution is represented through the nonlinear regression equation. The empirical equation for salt intrusion length scale, including tide, river discharge, and topographical effect is presented. As the comparison of empirical equation and existing data collected in study area, the characteristic of salt intrusion length and salinity distribution is changed by tide, fresh water, and geographical effect.

Formation and Variation of Turbidity Maximum in the Neuse River Estuary, North Carolina, U.S.A. (Neuse강 하구의 최대혼탁수 형성과 변동)

  • KIM Seok-Yun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.6
    • /
    • pp.754-770
    • /
    • 1994
  • Suspended sediment distribution and water column processes in the upper Neuse River estuary, North Carolina, were monitored monthly from February 1988 through February 1989, in order to identify the turbidity maximum, to determine its temporal and spatial variation under changing conditions(freshwater runoff, wind, and tide). During most of the observation periods a weak turbidity maximum, associated with the estuarine circulation processes, developed at a flow convergence zone, near the upstream limit of salt intrusion. No turbidity maximum was found when the water column was vertically homogeneous with respect to salinity and when there was no consistent upstream bottom flow. Annual migration of the turbidity maximum, accompanied by migration of salt intrusion, was over 20 km of the upper estuary. Due to the coincidence of dominant wind direction(NE-SW) with the main orientation of the Pamlico-Neuse system, wind played the dominant role in dynamics of the turbidity maximum by influencing the degree of salinity stratification and the extent and strength of estuarine circulation. Tidal effects on the sediment dynamics were negligible.

  • PDF

Preparation and Characterization of Demineralized Bone Particle Impregnated Poly(L-lactide) Scaffolds

  • Gilson Khang;Park, Chong-Soo;John M. Rhee;Lee, Sang-Jin;Lee, Young-Moo;Park, Myoung-Kyu;Lee, Hai-Bang;Lee, Ilwoo
    • Macromolecular Research
    • /
    • v.9 no.5
    • /
    • pp.267-276
    • /
    • 2001
  • In order to endow with new bioactive functionality from demineralized bone particle (DBP) as natural source to poly(L-lactide) (PLA) synthetic biodegradable polymer, porous DBP/PLA as natural/synthetic composite scaffolds were prepared and compared by means of the emulsion freeze drying and solvent casting/salt leaching methods for the possibility of the application of tissue engineered bone and cartilage. For the emulsion freeze drying method, it was observed that the pore size decreased in the order of 79$\mu\textrm{m}$ (PLA control) > 47$\mu\textrm{m}$ (20% of DBP) > 23 $\mu\textrm{m}$ (40% of DBP) > 15$\mu\textrm{m}$ (80% of DBP). Porosities as well as specific pore areas decreased with increasing the amount of DBR. It can be explained that DBP acts like emulsifier resulting in stabilizing water droplet in emulsion. For the solvent casting/salt leaching method, a uniform distribution of well interconnected pores from the surface to core region were observed the pore size of 80 ∼70 $\mu\textrm{m}$ independent with DBP amount. Porosities as well as specific pore areas also were almost same. For pore size distribution by the mercury intrusion porosimeter analysis between the two methods, the pore size distribution of the emulsion freeze drying method was broader than that of the solvent casting/salt leaching method due to the mechanism of emulsion formation. Scaffolds of PLA alone, DBP/PLA of 40 and 80%, and DBP powder were implanted on the back of athymic nude mouse to observe the effect of DBP on the induction of cells proliferation by hematoxylin and eosin staining for 8 weeks. It was observed that the effect of DBP/PLA scaffolds on bone induction are stronger than PLA scaffolds, even though the bone induction effect of DBP/PLA scaffold might be lowered than only DBP powder, that is to say, in the order of DBP only > DBP/PLA scaffolds of 40 and 80% DBP > PLA scaffolds only for osteoinduction activity. In conclusion, it seems that DBP plays an important role for bone induction in DBP/PLA scaffolds for the application of tissue engineering area.

  • PDF

A Study on the Characteristics of Saline Groundwater and Its Well Development in the Western Coastal Area of Jeju Island (제주 서부 해안 지역 염지하수 특성 및 관정 개발에 관한 연구)

  • Cho, Eun-Il;Ko, Tak-Kyun;Lee, Min-Gyu;Kam, Sang-Kyu
    • Journal of Environmental Science International
    • /
    • v.27 no.8
    • /
    • pp.677-688
    • /
    • 2018
  • The purpose of this study was to minimize salt water intrusion into freshwater aquifers and limit the development of freshwater aquifers, by selecting an appropriate excavation depth of in the western coastal area of Jeju Island. The study site was mostly basaltic lava, which was mainly composed of trachy basalt. A vertical logging test was conducted to investigate the vertical distribution of the groundwater and saline groundwater interface in the study well. It was found that freshwater groundwater, saline groundwater, and freshwater groundwater are distributed from the surface to approximately 16 m, 16~50 m, and 50~60 m, below the ground, respectively. In order obtain saline groundwater and minimize the inflow of freshwater into this well, the drilling depth should be limited in the range of 16~50 m from the surface. Thus, saline groundwater well development should be carried out with reference to the measurement results, which depend on the drilling depth and EC (electrical conductivity) obtained with drilling apparatus for geology and ground handling.

Salinity Distribution and Ecological Environment of Han River Estuary (한강 하구역의 염분 분포 및 생태환경특성)

  • Park, Gyung Soo
    • Journal of Wetlands Research
    • /
    • v.6 no.1
    • /
    • pp.149-166
    • /
    • 2004
  • Water quality and ecological environment in the Han River estuary was analyzed using the longterm water quality monitoring data from National Fisheries Research and Development Institute (NFRDI) and the existing data collected in this area. Based on the salinity distribution and changes of current direction in the lower Han River and its estuary, boundaries of the estuary were identified and also, distribution patterns of the phyto- and zooplankton, benthos, ichthyoplankton and fish were discussed related with the salinity changes in the macrotidal subestuary of Han River. Seasonal and spatial distribution of salinity suggested that the direct impact of freshwater be limited to the Incheon North Harbour all the year round and even extended to the southern area of Gyunggi Bay near Palmi island during limited time, usually in summer. Upper limit of salt water intrusion through the Han River is likely to be Singok underwater dam located Gimpo, Gyunggi Province, and normally limited to much lower part of the river, Jeonryuri, Gimpo. Biological boundaries of the Han River estuary exceeded the physical boundaries based on the salinity distribution. Many estuarine species in plankton and fish were found at the totally freshwater or saltwater depending on the seasons and tidal cycles. Some estuarine ichthyoplanktons showed extremely limited distributions in the estuary whereas adult fish revealed wide ranges of salinity adaptation. Critical environmental issues in the Han River estuary and its drainage basin are likely to be 1) pressure on development-promoted district for new town in the drainage area of the estuary, 2) reduction of tidal flat by reclamation, 3) pollutant input through river from municipal sewages and industrial wastes, and 4) ecological barrier between river and terrestrial systems by the military wire fence and riverside road.

  • PDF

Numerical Simulation on Seawater Intrusion in Coastal Aquifer using N-S Solver Based on Porous Body Model (PBM (Porous Body Model) 기반의 N-S Solver를 이용한 해안대수층의 해수침투모의)

  • Lee, Woo-Dong;Jeong, Yeong-Han;Hur, Dong-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.12
    • /
    • pp.1023-1035
    • /
    • 2015
  • This study applies 3-D N-S solver based on PBM (Porous Body Model), LED-WASS-3D ver 2.0 to directly analyze non-linear interaction of seawater-freshwater-coastal aquifer in order to simulate the seawater infiltration into coastal aquifer. This numerical simulation is the first trial in Korea, as well as unusual and new numerical analysis abroad. Firstly, to validate the applied numerical model, the validity and effectiveness was verified for the numerical model by comparing and considering it with the result of laboratory experiment for seawater-freshwater interface in coastal aquifer. And then it simulated the seawater infiltration into coastal aquifer considering the changed levels of seawater and groundwater in order to analyze the distribution characteristics of flow field and seawater-freshwater interface of coastal aquifer as the level difference between seawater and groundwater and rate of seawater level (${\Delta}h/h$) increased. In addition, the characteristics of seawater infiltration were analyzed from the vertical salinity in the coastal aquifer by ${\Delta}h/h$, which cannot be obtained from existing non-diffusion numerical models. Finally, it analyzed the effect of ${\Delta}h/h$ on the seawater infiltration distance in coastal aquifer, which was indexed.

Lithium Distribution in Thermal Groundwater: A Study on Li Geochemistry in South Korean Deep Groundwater Environment (온천수 내 리튬 분포: 국내 심부 지하수환경의 리튬 지화학 연구)

  • Hyunsoo Seo;Jeong-Hwan Lee;SunJu Park;Junseop Oh;Jaehoon Choi;Jong-Tae Lee;Seong-Taek Yun
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.729-744
    • /
    • 2023
  • The value of lithium has significantly increased due to the rising demand for electric cars and batteries. Lithium is primarily found in pegmatites, hydrothermally altered tuffaceous clays, and continental brines. Globally, groundwater-fed salt lakes and oil field brines are attracting attention as major sources of lithium in continental brines, accounting for about 70% of global lithium production. Recently, deep groundwater, especially geothermal water, is also studied for a potential source of lithium. Lithium concentrations in deep groundwater can increase through substantial water-rock reaction and mixing with brines. For the exploration of lithim in deep groundwater, it is important to understand its origin and behavior. Therefore, based on a nationwide preliminary study on the hydrogeochemical characteristics and evolution of thermal groundwater in South Korea, this study aims to investigate the distribution of lithium in the deep groundwater environment and understand the geochemical factors that affect its concentration. A total of 555 thermal groundwater samples were classified into five hydrochemical types showing distinct hydrogeochemical evolution. To investigate the enrichment mechanism, samples (n = 56) with lithium concentrations exceeding the 90th percentile (0.94 mg/L) were studied in detail. Lithium concentrations varied depending upon the type, with Na(Ca)-Cl type being the highest, followed by Ca(Na)-SO4 type and low-pH Ca(Na)-HCO3 type. In the Ca(Na)-Cl type, lithium enrichment is due to reverse cation exchange due to seawater intrusion. The enrichment of dissolved lithium in the Ca(Na)-SO4 type groundwater occurring in Cretaceous volcanic sedimentary basins is related to the occurrence of hydrothermally altered clay minerals and volcanic activities, while enriched lithium in the low-pH Ca(Na)-HCO3 type groundwater is due to enhanced weathering of basement rocks by ascending deep CO2. This reconnaissance geochemical study provides valuable insights into hydrogeochemical evolution and economic lithium exploration in deep geologic environments.