• Title/Summary/Keyword: distribution of clothing microclimate

Search Result 10, Processing Time 0.023 seconds

The Distribution of Clothing Microclimate on the Upper Body (상반신에서의 의복기후분포)

  • Kim, Yang-Weon;Hong, Kyng-Hi
    • Korean Journal of Human Ecology
    • /
    • v.15 no.4
    • /
    • pp.647-650
    • /
    • 2006
  • The factors affecting clothing comfort are temperature, humidity, and air velocity of clothing microclimate which is the temperature and the humidity between the skin surface and the innermost garment, clothing pressure and clothing texture to the skin. This study was designed to estimate the distribution of clothing microclimate on the upper body. All the data of this study were collected from volunteered male subjects in the controlled climate chamber laboratory in which the temperature was $25\pm1^{\circ}C$, the relative humidity $50\pm5%$, and the air velocity 30cm/sec. All subjects should wear long-sleeved inner wear and pants woven in 100% cotton. Clothing microclimate temperature at 16 sites on the chest and 16 sites on the back was measured. The results were as follows: the distribution of the clothing microclimate temperature on the upper body was $30.6\sim34.7^{\circ}C$ on the breast and $31.5\sim35.4^{\circ}C$ on the back. While a mean temperature on the chest was 33.3$^{\circ}C$, it was 33.1$^{\circ}C$ on the back.

  • PDF

Distribution of clothing microclimate for making comfortable military uniform (쾌적한 군복 설계를 위한 의복기후 분포)

  • Kim, Yang-Won
    • Journal of National Security and Military Science
    • /
    • s.1
    • /
    • pp.231-247
    • /
    • 2003
  • To get the basic data for making comfortable military uniforms and to examine the distribution of clothing microclimate, seasonal fluctuations of skin temperature, subjective sensation, and clothing microclimate were measured from 10 males. The subject were questioned on thermal comfort in experiment. Clothing microclimate temperature at breast, skin temperature at four sites (breast, upper arm, thigh, leg), deep body temperature at eardrum( tympanic temperature), and subjective sensation were measured for an hour in the controlled climatic chamber. The subjects felt comfortable when skin temperature were recorded $34.43^{\circ}C$ at breast, $33.53^{\circ}C$ at upper arm, $32.9^{\circ}C$ at thigh, and 32.50 at leg. Then mean skin temperature was $33.55\pm$$0.63^{\circ}C$. Clothing microclimate temperature ranged from 31.2 to $33.8^{\circ}C$, and clothing microclimate humidity ranged from 49.80~52.41%. In the comparison of these results with the microclimate of military uniforms, it needs more insulation in clothing for military uniforms. It also says that military uniforms should be made of the textiles which can control humidity.

  • PDF

Effects of Differents types of Clothing and Colours on Clothing Microclimate in the Subjects wearing Sports Wear under Sunlight (일광하에서 운동시의 스포츠웨어 색상과 의복형태가 의복기후에 미치는 영향)

  • Kim, Tae-Kyu
    • Fashion & Textile Research Journal
    • /
    • v.3 no.3
    • /
    • pp.271-276
    • /
    • 2001
  • In this study, We endeavored to revaluate the effects of different types of clothing and colors on clothing microclimate in the subjects wearing sports wear at sunlight environment. This study was conducted 4 different kinds (cotton 100%) of clothing ensembles, that was W-1(long trousers and shirt of white color), B-1 (long trousers and shirt of black color), W-s (short trousers and shirt white color), B-s (short trousers and shirt black color) and were done in a climate chamber under sunlight ambient temperature ($33.67{\pm}1.8^{\circ}C$, $46.0{\pm}8.5%RH$) by three males subject who are in good healthy. Start a 20-min rest period, 20-min bouts of exercise and final 20-min recovery period were performed. The kinetic load was given for 20 minutes under the condition of 6.0 km/hr walking speed on the treadmill. The results is as followed In case of same type of garment, temperature within clothing which is based on difference of color the white ensemble keeps higher temperature than black one. According to distribution chart of temperature within clothing in case of chest, white one shows higher temperature than black one, in case of back, black one shows higher temperature than white one. Difference of heart rate was so clear and sequence is W-1>B-1>W-s>B-s, so we could find same tendency with temperature within clothing.

  • PDF

Thermophysiological Response of Human Body in Wearing Codling Vest (냉각조끼착용에 따른 인체의 온열생리학적 특성)

  • 권오경;김태규
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.11a
    • /
    • pp.148-154
    • /
    • 2000
  • To do this study, we produced cooling vest newly. Rectal temperature was ascended approximately from 37.2$^{\circ}C$ to 38.05$^{\circ}C$ in lab, but wearing cooling vest, the temperature was descended 0.2 while wearing developed product compare with existing product. Mean skin temperature which was showed distribution from 32.8∼36.5$^{\circ}C$, it was descended 1.0∼1.1$^{\circ}C$, while wearing cooling vest and comparing with existing product, wearing developed product was lower 0.5$^{\circ}C$, While wearing developed product, it was found that they had lower tendency than exiting product. Specifically in case of temperature within clothing(chest) 0.2∼2.0$^{\circ}C$ in case of humidity within clothing 2∼8% RH. Facts from above we confirmed that clothing microclimate had been improved and space was happened between body and garment in order to control. In subjective sensation, existing product made negative response during experiment period from participants, but developed product was nearing to comfortable area.

  • PDF

Efficiency and Comfort Properties of Silicon Solar Cell Applied Air Circulation Jacket according to the Incident Angle of Sunlight (실리콘 태양전지를 활용한 공기순환 의복의 태양광 입사각에 따른 효율성 및 쾌적성평가)

  • Lee, Ji-Yeon;Cho, A-Ra;Jung, Ye-Lee;Kim, Eun-Ae
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.33 no.11
    • /
    • pp.1806-1816
    • /
    • 2009
  • This study analyzes the efficiency of a solar cell attached to an air circulation jacket. A commercially available silicon solar panel was selected and attached at four spots where the body angle was $40-60^{\circ}$ and voltage ($V_{oc}$, V), current ($I_{sc}$, A), and output power (P, W) were measured to determine the efficiency. The solar panel was applied to the outer jacket that operates with two fans to increase the convection that lowers the body temperature. The heavy work of standing, walking, and sweeping of a street sweeper was simulated in the field test. The microclimate within the jacket (with or without a fan) was measured and the subjective thermal, humidity, and comfort sensations were surveyed. SPSS 12.0 statistical package was used for a t-test and Wilcoxon signed-rank test. The results show that the highest efficiency of the solar cell was at the incident angle of $60^{\circ}$ in terms of voltage, current and output power distribution. The microclimate temperature of the air circulation jacket decreased significantly with the high power of the fan and subjects felt cooler than the jacket with a fan at the incident angle of $60^{\circ}$. Air circulation jackets operated by a silicon solar panel showed a significant cooling effect on the wearers.

Efficacy of Cooling Vest for Auxiliary Body Cooling in Hot Environments(2) - Comparison in Terms of Thermophysiological Properties Between New Cooling Vest and Standard Cooling Vest - (고온환경 하에서 착용하는 인체냉각 보조도구로서의 Cooling Vest연구(2) - 개발제품의 온열생리학적특성 -)

  • Kwon, Oh-Kyung;Kim, Tae-Kyo;Kim, Jin-A
    • Fashion & Textile Research Journal
    • /
    • v.2 no.4
    • /
    • pp.346-352
    • /
    • 2000
  • The purposes of this study are finding out thermophysiological properties throughout wearing experiment with standard cooling vest as well as providing data in order to design and apply more comfortable cooling vest. To do this study, we produced cooling vest newly. 1. Rectal temperature was ascended approximately from $37.2^{\circ}C$ to $38.05^{\circ}C$ in lab, but wearing cooling vest, the temperature was descended 0.2 while wearing developed product compare with existing product. Mean skin temperature which was showed distribution from $32.8{\sim}36.5^{\circ}C$, it was descended $1.0{\sim}1.1^{\circ}C$, while wearing cooling vest and comparing with existing product, wearing developed product was lower $0.5^{\circ}C$. 2. While wearing developed cooling vest, it was found that they had lower tendency than standard cooling vest. Specifically in case of temperature within clothing (chest) $0.2{\sim}2.0^{\circ}C$ in case of humidity within clothing 2~8%RH. Facts from above we confirmed that clothing microclimate had been improved and space was happened between body and garment in order to control. 3. In subjective sensation, standard cooling vest made negative response during experiment period from participants, but new cooling vest was nearing to comfortable area. It was con finned from above conclusions that wearing developed product is more effective in terms of comfort and reduction of heat stress in situation of working in hot environment.

  • PDF

Physiological Responses of Quick Absorbing/Drying T-shirts Designed with Sweating and Skin Temperature Distribution (발한 및 피부온 분포를 적용한 흡한속건 T-Shirts의 착용생리반응)

  • Ha, Ji-Hyun;Kim, Hee-Eun
    • Fashion & Textile Research Journal
    • /
    • v.13 no.4
    • /
    • pp.635-643
    • /
    • 2011
  • This study was investigated to evaluate the physiological responses on T-shirts manufactured with selected functional materials by body parts which were selectioned on the distribution of sweating and temperature change. Seven healthy men in twenties were participated in a climate chamber of $27{\pm}0.5^{\circ}C$ and $50{\pm}1%RHC$. Three kinds of T-shirts named 'D1', 'D2' and 'Poly' were used as experimental clothings. Four kinds of functional materials of quick absorbing/drying were used in all section in 'D1', but two kinds of functional materials used partially in 'D2'. 'Poly' T-shirts used only polyester. In an experimental schedule of 90 minutes, which were consisted of 'Rest', twice of 'Exercise' and twice of 'Recovery' periods, the subjects walked on a treadmill with 60% of $VO_2max$. As a physiological responses, the microclimate temperature, surface temperature(skin, clothing) and sweat rate were measured. Temperature regulation was kept well in 'D1' rather than other T-shirts. The quick absorbing/drying T-shirts showed its performance well as the exercise goes on the second half. With these results in mind, 'D1' will be more effective for long hours exercise such as climbing rather than short hours exercise.

Wearing Effects of Winter Gloves in Cold Environment on Physiological Responses and Subjective Perception in Elderly Females (추운 환경에서 보온용 장갑 착용이 고령 여성의 인체 생리 반응 및 주관적 감각에 미치는 효과)

  • Park, Joonhee;Lee, Joo-Young
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.43 no.6
    • /
    • pp.866-876
    • /
    • 2019
  • This study examined the physiological and psychological effects of wearing gloves at rest in a cold environment. Seven elderly females participated in two separate trials: wearing gloves (WG) and bare hands (BH). The experiment was conducted for 60 min in a climatic chamber (air temperature 7.8±0.3℃ with 44±2%RH) with a sedentary posture. Microclimate temperature on the left palm was 4.16℃ higher in WG compared to that in BH (p<.1). Microclimate temperature on the chest during the last 5 min increased compared to the initial 5 min only in WG (p<.05). During the last 5 min, skin temperatures at the arm and hand in WG were higher than those in BH (p<.05). There was no statistical difference in the change of rectal temperature between WG and BH. Heart rate in BH was significantly higher compared to the WG (p<.05). Subjects also felt less cold on the whole body and hand in WG than those in BH (p<.05). The findings indicate that wearing gloves for elderly females affected the distribution of skin temperature and cardiovascular response in cold environments. Elderly females should be informed about the importance of wearing gloves through the clothing guideline in winter.

Functional Underwear Development for Elderly Woman from 3D Body Model applying PCM treatment (PCM 가공과 3차원 인체 모델링 기술을 적용한 노년 여성용 기능성 언더웨어 설계)

  • Choi, Sin-Ae;Kim, Tae-gyou;Park, Youong-Min;Shin, Ji-Young;Park, Soonjee
    • Fashion & Textile Research Journal
    • /
    • v.18 no.4
    • /
    • pp.457-467
    • /
    • 2016
  • This study aimed to develop functional underwear for elderly women in their sixties in terms of good fit, wear comfort and body temperature regulation. To satisfy elderly women's physical and metabolical needs, an automatic temperature control system via PCM treatment was applied. Underwear pattern was produced by producing body surface replica, which was derived from 3D body parametric model. Differential ratios of outline length and area between 3D surface and 2D plane were 1.4% and 0.5%, respectively. The reduction rate was determined as 10% through the expert's evaluation. PCM treated fabric showed higher Q-max, meaning that it can facilitate the thermal transition in hot situation. Moreover, it also showed higher insulation to preserve heat and keep warm microclimate in a cold weather. Heat distribution measurements on various body parts revealed that the temperature after PCM treatment was significantly higher. The clothing pressure after 10% pattern reduction showed higher before reduction, at the same time, even lower than the comfort clothing pressure range of $5{\sim}10gf/cm^2$, implying that experimental garment of this research is acceptable in terms of clothing pressure. Evaluation results on the comfort to move in various motions proved that adequate clothing pressure improved the wear comfort in various motions.

Clothing microclimate distribution on upper body for assessment of clothing comfort (의복의 쾌적성 평가를 위한 상반신에서의 의복기후분포)

  • 김양원;홍경희;박세진
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2002.11a
    • /
    • pp.275-278
    • /
    • 2002
  • 의복의 쾌적감에 영향을 미치는 인자로는 크게 미세공간의 온도, 습도, 기류인 의복내기후, 의복에 의해 피부가 받는 의복압, 의복과 피부와의 접촉감 등이다. 본 연구에서는 우선적으로 인체의 상반신에서 의복기후분포를 파악하였다. 상반신에서 의복기후 분포를 평가하기 위하여 건강한 남자 10명을 대상으로 25$\pm$1$^{\circ}C$, 습도 50$\pm$5%, 기류는 30cm/sec이하의 환경에서 의복기후를 측정하였다. 실험의복은 100% 면으로 된 긴 팔, 긴바지의 속내의를 착용하게 하였다. 측정결과 가슴에서의 의복내온도는 30.6~34.7$^{\circ}C$였고, 그 평균은 33.3$^{\circ}C$였다. 또한 의복내습도는 35.6~57.9%였고, 그 평균은 38.3%였다. 등에서의 의복내온도의 분포는 31.5~35.4$^{\circ}C$였고, 평균은 33.1$^{\circ}C$였으며, 의복내습도는 36.2~55.3%였으며, 평균은 38.8%였다. 상반신인 가슴과 등에서의 의복내온도와 의복내습도간에는 차이가 없는 것으로 나타났고, 상반신 전체의 의복내온도의 분포는 30.6~35.4$^{\circ}C$, 의복내 습도의 분포는 35.6~57.9%였다.

  • PDF