• Title/Summary/Keyword: distribution network

Search Result 3,258, Processing Time 0.041 seconds

A NARX Dynamic Neural Network Platform for Small-Sat PDM (동적신경망 NARX 기반의 SAR 전력모듈 안전성 연구)

  • Lee, Hae-Jun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.6
    • /
    • pp.809-817
    • /
    • 2020
  • In the design and development process of Small-Sat power distribution and transmission module, the stability of dynamic resources was evaluated by a deep learning algorithm. The requirements for the stability evaluation consisted of the power distribution function of the power distribution module and demand module to the SAR radar in Small-Sat. To verify the performance of the switching power components constituting the power module PDM, the reliability was verified using a dynamic neural network. The adoption material of deep learning for reliability verification is the power distribution function of the payload to the power supplied from the small satellite main body. Modeling targets for verifying the performance of this function are output voltage (slew rate control), voltage error, and load power characteristics. First, to this end, the Coefficient Structure area was defined by modeling, and PCB modules were fabricated to compare stability and reliability. Second, Levenberg-Marquare based Two-Way NARX neural network Sigmoid Transfer was used as a deep learning algorithm.

Distribution Planning in a Multi-Echelon Inventory Model under Rolling Horizon Environment (Rolling Horizon 환경하에서 다단계 재고 모형의 분배계획 수립에 관한 연구)

  • Ahn, Jae-Sung;Kwon, Ick-Hyun;Kim, Sung-Shick
    • IE interfaces
    • /
    • v.16 no.4
    • /
    • pp.441-449
    • /
    • 2003
  • In this paper we propose a distribution planning method aiming the use in the real-life situations. The assumed form of the distribution network is arborescence. At every node in the distribution network, orders are placed periodically. At each renewal of planning horizon, demand informations of periods in the horizon are updated. The objective of the problem is to minimize the total cost, which is the sum of holding and backorder costs of all sites during planning horizon. For such a situation, this study addressed an effective distribution plan when demands for demand-sites are provided for a given planning horizon.

Development of Distribution Transformer with Condition Monitoring Sensors and Data Processing Unit (상태감시용 센서를 내장한 배전용 변압기 및 데이터 처리장치 개발)

  • Jung, Joon-Hong;Yu, Nam-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.201_202
    • /
    • 2009
  • This paper presents a design methodology of a distribution transformer with condition monitoring sensors and its data processing unit. The proposed distribution transformer includes various type of condition monitoring sensors such as load current/voltage, temperature and heat aging of insulating oil. The data processing unit is installed at the distribution transformer site. It integrates sensed data and transmits these to a central server system. The proposed distribution transformer and its data processing unit will help an on-line condition monitoring system for distribution transformers.

  • PDF

Chaotic Search Algorithm for Network Reconfiguration in Distribution Systems (배전계통 최적구성을 위한 카오스 탐색법 응용)

  • 이상봉;유석구
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.6
    • /
    • pp.325-332
    • /
    • 2003
  • The loss minimization is one of the most important problems to save the operational cost in distribution systems. This paper presents an efficient method for optimal feeder reconfiguration of distribution systems. Chaos search algorithm (CSA) is used to reconfigure distribution systems so that active power losses are globally minimized with turning on/off sectionalizing switches. In optimization problem, the CSA searches the global optimal solution on the basis of regularity in chaotic motions and easily escapes from local or near optimal solution. The CSA is tested on 15 buses and 32 buses distribution systems, and the results indicate that it is able to determine appropriate switching options for global optimum reconfiguration.

Power Distribution Network Modeling using Block-based Approach

  • Chew, Li Wern
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.4
    • /
    • pp.75-79
    • /
    • 2013
  • A power distribution network (PDN) is a network that provides connection between the voltage source supply and the power/ground terminals of a microprocessor chip. It consists of a voltage regulator module, a printed circuit board, a package substrate, a microprocessor chip as well as decoupling capacitors. For power integrity analysis, the board and package layouts have to be transformed into an electrical network of resistor, inductor and capacitor components which may be expressed using the S-parameters models. This modeling process generally takes from several hours up to a few days for a complete board or package layout. When the board and package layouts change, they need to be re-extracted and the S-parameters models also need to be re-generated for power integrity assessment. This not only consumes a lot of resources such as time and manpower, the task of PDN modeling is also tedious and mundane. In this paper, a block-based PDN modeling is proposed. Here, the board or package layout is partitioned into sub-blocks and each of them is modeled independently. In the event of a change in power rails routing, only the affected sub-blocks will be reextracted and re-modeled. Simulation results show that the proposed block-based PDN modeling not only can save at least 75% of processing time but it can, at the same time, keep the modeling accuracy on par with the traditional PDN modeling methodology.

A study on the SCM Activity and Business Performance varied with the Supply Chain Structure (공급사슬구조에 따른 SCM 활동과 경영성과에 관한 연구)

  • Jang Hyeong-Wook;Lee Sang-Shik;Park Byung-Kwon
    • The Journal of Information Systems
    • /
    • v.15 no.2
    • /
    • pp.173-193
    • /
    • 2006
  • This study first conceptualizes and investigates five dimensions of SCM activities, such as organizational capacity, revitalization support collaboration, appraisal and responsibility, and information system activities. Second, this study develops three dimensions of a supply chain structure, and proposes a balanced scorecard (BSC) model in order to measure business performance. And then, this study establishes too research hypotheses as follows: H1. The SCM activities varies with the supply chain structure. H2. The management performance varies with the supply chain structure. In the questionnaire survey for empirical analysis, this study carefully selected 809 of companies in Korea. We conducted a survey by mail and collected 127 data. Out of 127 data we actually used 103 responses for statistical analysis. After conducting statistical analysis, we could find the results as followed: 1) The supply chain structure was classified into three networks through a clustering procedure, such as supply network, conversion network, and distribution network, and these networks were used to testify hypotheses. As a result the effect of SCM activities varies according to three networks and especially, the companies in distribution network were more active than those in supply and conversion networks doing SCM activities. 2) We may conclude that business performance varies with three networks, and distribution network achieves better performance than supply and conversion networks do.

  • PDF

Applicability of Several Skeletonization Methods for the Transient Analysis in the Water Distribution System (상수관망 부정류 해석을 위한 관망 간략화 방법에 대한 연구)

  • Lee, Jong-Pil;Kim, Hyung-Guen;Kim, Sang-Hyun;Lee, Hyun-Dong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.521-526
    • /
    • 2004
  • It is necessary to analyze the unsteady flow in the pipe network for the better operation and controls, but there are some problems in actual pipe network simulation, such as collecting a large amount of information in the field, operating highly upgraded computer system, and keeping a big storage device to run analysis program. The skeletonization method is used to cope with the problems in this paper. It is expected to reduce computation time, researcher's efforts, and costs for the analyzing the pipe network. The impact of individual pipe elements to the behavior of the water distribution system can be accounted in the process of skeletonization. However it is also important to study continuously about how to apply the skeletonization method for each of different cases, because inadequate uses may bring simulation to a false result. This paper introduces basic theories and skeletonizing examples in the actual pipe network in Dae-gu city.

  • PDF

Relay node selection scheme based on message distribution for DTN (DTN에서 메시지 분포에 따른 중계 노드 선택 기법)

  • Dho, Yoon-hyung;Lee, Kang-whan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.431-433
    • /
    • 2016
  • In this paper, we propose an algorithm that analyzes characteristic nodes to select efficient relay nodes using message distribution. Existing delay-tolerant network (DTN) routing algorithms have problems with large latency and overhead on account of the deficiency of network information in an unsteady network. We must solve this problem, predict future networks using node state information, and apply a weight factor that changes according to the message distribution. Simulation results show that the proposed algorithm provides enhanced performance compared to existing DTN routing algorithms.

  • PDF

Applicability of reliability indices for water distribution networks (공급부하 시나리오에 따른 상수관망 신뢰도 지수의 적용성 분석)

  • Jeong, Gimoon;Kang, Doosun
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.7
    • /
    • pp.441-453
    • /
    • 2017
  • Water distribution networks (WDNs) supply drinking water to end users by maintaining sufficient water pressure for reliable water supply in normal and abnormal conditions. To design and operate WDNs in efficient way, it is required to quantify water supply ability of the network. Various reliability indices have been developed and applied in this field. Most of the reliability indices are calculated based on the energy within a network; that is, the total energy entered the network, the energy dissipated through water supply process, and the energy finally supplied at the nodes, etc. This study explains the energy composition in WDNs and introduces three well-known reliability indices developed based on the energy composition of the network. The three indices were applied to a study network under various demand loading scenarios that could occur in real-life operation practices. This study aimed to investigate the applicability of the reliability indices under abnormal scenarios and proposed to illustrate the spatial distribution of the system reliability in more intuitive way for proper responses to the abnormal situations.

Evaluation of Rain Gauge Distribution Characteristics by Altitude using Optimization Technique (최적화 기법을 통한 강우관측소의 고도별 분포특성 검토)

  • Lee, Ji Ho;Kim, Jong Geun;Joo, Hong Jun;Jun, Hwan Don
    • Journal of Wetlands Research
    • /
    • v.19 no.1
    • /
    • pp.103-111
    • /
    • 2017
  • In this study, we estimate the NNI(Nearest Neighbor Index) which is considered altitude of rain gauge network as a method for evaluating appropriateness of spatial distribution and the current rain gauge network is evaluated. The altitude is divided by equal-area-ratio and optimal NNI within given basin condition is estimated using harmony search method for considering geographical conditions that vary from altitude to altitude. After calculating current state and optimal NNI for each altitude, the distribution of the rain gauge network is evaluated based on the difference between the two NNIs. As a result, it founds that the density of rain gauge networks is relatively thin as the altitude increases. Furthermore, it will be possible to construct an efficient rain gauge network if the characteristics of different altitudes are considered when a new rain gauge network is newly constructed.