• Title/Summary/Keyword: distribution matrix

Search Result 1,216, Processing Time 0.029 seconds

A study on the Low Resistance Aluminum-Molybdenum Alloy for stretchable metallization (스트레처블 배선용 저저항 알루미늄-몰리브데늄 합금에 대한 연구)

  • Min-Jun-Yi;Jin-Won-Bae;Su-Yeon-Park;Jae-Ik-Choi;Geon-Ho-Kim;Jong-Hyun-Seo
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.2
    • /
    • pp.160-168
    • /
    • 2023
  • Recently, investigation on metallization is a key for a stretchable display. Amorphous metal such as Ni and Zr based amorphous metal compounds are introduced for a suitable material with superelastic property under certain stress condition. However, Ni and Zr based amorphous metals have too high resistivity for a display device's interconnectors. In addition, these metals are not suitable for display process chemicals. Therefore, we choose an aluminum based amprhous metal Al-Mo as a interconnector of stretchable display. In this paper, Amorphous Forming Composition Range (AFCR) for Al-Mo alloys are calculated by Midema's model, which is between 0.1 and 0.25 molybdenum, as confirmed by X-ray diffraction (XRD). The elongation tests revealed that amorphous Al-20Mo alloy thin films exhibit superior stretchability compared to pure Al thin films, with significantly less increase in resistivity at a 10% strain. This excellent resistance to hillock formation in the Al20Mo alloy is attributed to the recessed diffusion of aluminum atoms in the amorphous phase, rather than in the crystalline phase, as well as stress distribution and relaxation in the aluminum alloy. Furthermore, according to the AES depth profile analysis, the amorphous Al-Mo alloys are completely compatible with existing etching processes. The alloys exhibit fast etch rates, with a reasonable oxide layer thickness of 10 nm, and there is no diffusion of oxides in the matrix. This compatibility with existing etching processes is an important advantage for the industrial production of stretchable displays.

Interfacial shear strength test by a hemi-spherical microbond specimen of carbon fiber and epoxy resin (탄소섬유/에폭시의 반구형 미소접합 시험편에 대한 계면강도 평가)

  • Park, Joo-Eon;Gu, Ja-Uk;Kang, Soo-Keun;Choi, Nak-Sam
    • Composites Research
    • /
    • v.21 no.4
    • /
    • pp.15-21
    • /
    • 2008
  • Interfacial shear strength between epoxy and carbon fiber was analyzed utilizing a hemi-spherical microbond specimens adhered onto single carbon fiber. The hemi-spherical microbond specimen showed high regression coefficient and small standard deviation in the measurement of interfacial strength as compared with a droplet and an inverse hemi-spherical one. This seemed to be caused by the reduced meniscus effects and the reduced stress concentration In the region contacting with a pin-hole loading device. Finite element analysis showed that the stress distributions along the fiber/matrix interface in the hemi-spherical specimen had a stable shear stress distribution along the interface without any stress mode change. The experimental data was also different according to the kinds of loading device such as the microvise-tip and the pin-holed plate.

Fabrication of Anti-moiré Filter with Light Diffusing Particles Using Slot-die Coating (슬롯 다이 코팅을 이용한 광 확산 입자 기반 Anti-Moiré Filter 제작)

  • Hong, Songeun;Jeon, Kyungjun;Shin, Youngkyun;Park, Jongwoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.33-38
    • /
    • 2022
  • With an attempt to suppress the moiré phenomenon caused by the interference between the black matrix of a display panel and the metal grid of a camera, we have fabricated an anti-moiré filter using light diffusing particles (LDPs) with the average diameter of 20 ㎛. It is demonstrated that the anti-moiré filter coated on a glass substrate (370 mm × 470 mm) using a table slot-die coater reduces the moiré intensity to a great extent when the area covered by LDPs is 50%. To quantify the intensity of moiré phenomenon, we have measured the lightness ratio and found that it is reduced from 132.12 down to 105.71 by the filter. To find the optimum area covered by LDPs, we have performed ray tracing simulations using Mie scatters as a substitute for LDPs. From the simulated irradiation distribution, we have calculated the standard deviation (SD) and contrast ratio (CR) to evaluate the moiré strength. As expected, the SD and CR values decrease with increasing covered area by LDPs. However, there exists a trade-off between the transmittance of the filter and its capability of reducing the moiré intensity in determining the area covered by LDPs.

Safety Evaluation of Carbon Fiber/Epoxy Composite Link Using Micromechanics of Failure Criterion (미시역학적 파손 기준을 이용한 탄소섬유/에폭시 복합재 링크의 안전성 평가)

  • Jae Ho Cha;Sung Ho Yoon
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.154-161
    • /
    • 2023
  • This study explored the feasibility of replacing a metal link with a carbon fiber/epoxy composite link and assessed its capacity to withstand a given load condition using failure criteria. The micromechanics of failure (MMF) criterion was employed to predict the failure mode of the composite material, and mechanical tests were conducted to obtain reference strength parameters for MMF. The findings revealed that the stress distribution was concentrated near the hole, and weaknesses were found around the hole and at the end of the link under bending conditions. Based on the failure index, matrix tensile failure was predicted at the end of the link, and fiber compression failure occurred near the hole. The methods and results obtained from this study can provide valuable guidelines for assessing the safety of composite materials under specific load conditions when replacing metal parts with carbon fiber/epoxy composites to achieve weight reduction.

A novel analytical evaluation of the laboratory-measured mechanical properties of lightweight concrete

  • S. Sivakumar;R. Prakash;S. Srividhya;A.S. Vijay Vikram
    • Structural Engineering and Mechanics
    • /
    • v.87 no.3
    • /
    • pp.221-229
    • /
    • 2023
  • Urbanization and industrialization have significantly increased the amount of solid waste produced in recent decades, posing considerable disposal problems and environmental burdens. The practice of waste utilization in concrete has gained popularity among construction practitioners and researchers for the efficient use of resources and the transition to the circular economy in construction. This study employed Lytag aggregate, an environmentally friendly pulverized fuel ash-based lightweight aggregate, as a substitute for natural coarse aggregate. At the same time, fly ash, an industrial by-product, was used as a partial substitute for cement. Concrete mix M20 was experimented with using fly ash and Lytag lightweight aggregate. The percentages of fly ash that make up the replacements were 5%, 10%, 15%, 20%, and 25%. The Compressive Strength (CS), Split Tensile Strength (STS), and deflection were discovered at these percentages after 56 days of testing. The concrete cube, cylinder, and beam specimens were examined in the explorations, as mentioned earlier. The results indicate that a 10% substitution of cement with fly ash and a replacement of coarse aggregate with Lytag lightweight aggregate produced concrete that performed well in terms of mechanical properties and deflection. The cementitious composites have varying characteristics as the environment changes. Therefore, understanding their mechanical properties are crucial for safety reasons. CS, STS, and deflection are the essential property of concrete. Machine learning (ML) approaches have been necessary to predict the CS of concrete. The Artificial Fish Swarm Optimization (AFSO), Particle Swarm Optimization (PSO), and Harmony Search (HS) algorithms were investigated for the prediction of outcomes. This work deftly explains the tremendous AFSO technique, which achieves the precise ideal values of the weights in the model to crown the mathematical modeling technique. This has been proved by the minimum, maximum, and sample median, and the first and third quartiles were used as the basis for a boxplot through the standardized method of showing the dataset. It graphically displays the quantitative value distribution of a field. The correlation matrix and confidence interval were represented graphically using the corrupt method.

Porosity-dependent vibration investigation of functionally graded carbon nanotube-reinforced composite beam

  • Abdulmajeed M. Alsubaie;Ibrahim Alfaqih;Mohammed A. Al-Osta;Abdelouahed Tounsi;Abdelbaki Chikh;Ismail M. Mudhaffar;Saeed Tahir
    • Computers and Concrete
    • /
    • v.32 no.1
    • /
    • pp.75-85
    • /
    • 2023
  • This work utilizes simplified higher-order shear deformation beam theory (HSDBT) to investigate the vibration response for functionally graded carbon nanotube-reinforced composite (CNTRC) beam. Novel to this work, single-walled carbon nanotubes (SWCNTs) are distributed and aligned in a matrix of polymer throughout the beam, resting on a viscoelastic foundation. Four un-similar patterns of reinforcement distribution functions are investigated for the CNTRC beam. Porosity is another consideration taken into account due to its significant effect on functionally graded materials (FGMs) properties. Three types of uneven porosity distributions are studied in this study. The damping coefficient and Winkler's and Pasternak's parameters are considered in investigating the viscosity effect on the foundation. Moreover, the impact of different parameters on the vibration of the CNTRC beam supported by a viscoelastic foundation is discussed. A comparison to other works is made to validate numerical results in addition to analytical discussions. The findings indicate that incorporating a damping coefficient can improve the vibration performance, especially when the spring constant factors are raised. Additionally, it has been noted that the fundamental frequency of a beam increases as the porosity coefficient increases, indicating that porosity may have a significant impact on the vibrational characteristics of beams.

Multiscale bending and free vibration analyses of functionally graded graphene platelet/ fiber composite beams

  • Garg, A.;Mukhopadhyay, T.;Chalak, H.D.;Belarbi, M.O.;Li, L.;Sahoo, R.
    • Steel and Composite Structures
    • /
    • v.44 no.5
    • /
    • pp.707-720
    • /
    • 2022
  • In the present work, bending and free vibration analyses of multilayered functionally graded (FG) graphene platelet (GPL) and fiber-reinforced hybrid composite beams are carried out using the parabolic function based shear deformation theory. Parabolic variation of transverse shear stress across the thickness of beam and transverse shear stress-free conditions at top and bottom surfaces of the beam are considered, and the proposed formulation incorporates a transverse displacement field. The present theory works only with four unknowns and is computationally efficient. Hamilton's principle has been employed for deriving the governing equations. Analytical solutions are obtained for both the bending and free vibration problems in the present work considering different variations of GPLs and fibers distribution, namely, FG-X, FG-U, FG-Λ, and FG-O for beams having simply-supported boundary condition. First, the matrix is assumed to be strengthened using GPLs, and then the fibers are embedded. Multiscale modeling for material properties of functionally graded graphene platelet/fiber hybrid composites (FG-GPL/FHRC) is performed using Halpin-Tsai micromechanical model. The study reveals that the distributions of GPLs and fibers have significant impacts on the stresses, deflections, and natural frequencies of the beam. The number of layers and shape factors widely affect the behavior of FG-GPL-FHRC beams. The multilayered FG-GPL-FHRC beams turn out to be a good approximation to the FG beams without exhibiting the stress-channeling effects.

Development of Deep Learning AI Model and RGB Imagery Analysis Using Pre-sieved Soil (입경 분류된 토양의 RGB 영상 분석 및 딥러닝 기법을 활용한 AI 모델 개발)

  • Kim, Dongseok;Song, Jisu;Jeong, Eunji;Hwang, Hyunjung;Park, Jaesung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.4
    • /
    • pp.27-39
    • /
    • 2024
  • Soil texture is determined by the proportions of sand, silt, and clay within the soil, which influence characteristics such as porosity, water retention capacity, electrical conductivity (EC), and pH. Traditional classification of soil texture requires significant sample preparation including oven drying to remove organic matter and moisture, a process that is both time-consuming and costly. This study aims to explore an alternative method by developing an AI model capable of predicting soil texture from images of pre-sorted soil samples using computer vision and deep learning technologies. Soil samples collected from agricultural fields were pre-processed using sieve analysis and the images of each sample were acquired in a controlled studio environment using a smartphone camera. Color distribution ratios based on RGB values of the images were analyzed using the OpenCV library in Python. A convolutional neural network (CNN) model, built on PyTorch, was enhanced using Digital Image Processing (DIP) techniques and then trained across nine distinct conditions to evaluate its robustness and accuracy. The model has achieved an accuracy of over 80% in classifying the images of pre-sorted soil samples, as validated by the components of the confusion matrix and measurements of the F1 score, demonstrating its potential to replace traditional experimental methods for soil texture classification. By utilizing an easily accessible tool, significant time and cost savings can be expected compared to traditional methods.

Influences of porosity distributions on bending and buckling behaviour of functionally graded carbon nanotube-reinforced composite beam

  • Abdulmajeed M. Alsubaie;Mohammed A. Al-Osta;Ibrahim Alfaqih;Abdelouahed Tounsi;Abdelbaki Chikh;Ismail M. Mudhaffar;Salah U. Al-Dulaijan;Saeed Tahir
    • Computers and Concrete
    • /
    • v.34 no.2
    • /
    • pp.179-193
    • /
    • 2024
  • The bending and buckling effect for carbon nanotube-reinforced composite (CNTRC) beams can be evaluated by developing the theory of third shear deformation (TSDT). This study examines beams supported by viscoelastic foundations, where single-walled carbon nanotubes (SWCNTs) are dispersed and oriented within a polymer matrix. Four patterns of reinforcement are used for the CNTRC beams. The rule of mixtures is assessed for the material properties of CNTRC beams. The effective functionally graded materials (FGM) properties are studied by considering three different uneven distribution types of porosity. The damping coefficient is considered to investigate the viscosity effect on the foundation in addition to Winkler's and Pasternak's parameters. The accuracy of the current theory is inspected with multiple comparison works. Moreover, the effects of different beam parameters on the CNTRC beam bending and buckling over a viscoelastic foundation are discussed. The results demonstrated that the O-beam is the weakest type of CNTRC beam to resist buckling and flexure loads, whereas the X-beam is the strongest. Moreover, it is indicated that the presence of porosity in the beams decreases the stiffness and increases deflection. In comparison, the deflection was reduced in the presence of a viscoelastic foundation.

Determination of Optimal Locations for Measuring Displacements to Adjust Cable Tension Forces of Cable-Stayed Bridges (사장교 시공 중 케이블 장력 보정을 위한 최적 변위계측 위치 결정)

  • Shin, Soobong;Lee, Jung-Yong;Kim, Jae-Cheon;Jung, Kil-Je
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.2 s.54
    • /
    • pp.129-136
    • /
    • 2009
  • The paper presents an algorithm of selecting optimal locations for measuring displacements(OLD) to adjust cable tension forces during the construction of cable-stayed bridges. The rank for optimal locations can be determined from the effective independence distribution vectors(EIDV) that are computed from the Fisher Information Matrices(FIM) formulated with the displacement sensitivities. To examine the efficiency and reliability of the proposed algorithm for determining OLD, a simulation study on a cable-stayed bridge has been carried out. The results using FIM formulated with displacements are compared with those using FIM with displacement sensitivities through the simulation study. The effects of measurement noise and error in cable length on the adjustment of cable tension forces are evaluated statistically by applying the Monte Carlo scheme.