• Title/Summary/Keyword: distribution margin.

Search Result 353, Processing Time 0.025 seconds

Origin and Distribution of Cut and Fill Structures in the Southwestern Margin of Ulleung Basin, East Sea (동해 울릉분지 남서주변부에 발달하는 침식충전구조의 기원 및 분포)

  • Park, Yong Joon;Kang, Nyeon Keon;Yi, Bo Yeon;Yoo, Dong Geun
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.2
    • /
    • pp.39-53
    • /
    • 2015
  • Analysis of multi-channel seismic reflection profiles acquired from the southwestern margin of Ulleung Basin reveals that the cut and fill structures, which show U-shaped or V-shaped morphology, occur on variable size. The cut and fill structure mostly consists of fine-grained sediments on the well data and is characterized by transparent or semitransparent seismic facies on the seismic section. Such cut and fill structures dominantly occur in the syn-compressional megasequence (MSQ3), which was deposited during basin deformation of late Miocene, among the four megasequences of the study area. These cut and fill structures can be divided into three groups based on their size and formation time. The cut and fill structures of Group I were formed when Dolgorae structure was active, and occurred on a small scale. The cut and fill structures of group II were formed when both Dolgorae structure and Gorae V structure were active, and the number and size of those increased compared with group I. The cut and fill structures of group III were formed when Dolgorae structure was weaken gradually but Gorae V structure kept active, and the number and size of those decreased in comparison with group II. Consequently the cut and fill structures in the southwestern margin of Ulleung basin are interpreted as submarine canyon based on spatial distribution, size and fill sediment. They were controlled by the tectonic movement in response to basin closure and tectonic-induced sediment supply variation.

THE EFFECTS OF DENTIN BONDING AGENT THICKNESS ON STRESS DISTRIBUTION OF COMPOSITE-TOOTH INTERFACE : FINITE ELEMENT METHOD (상아질 접착제의 두께가 치아와 복합레진 경계의 응력발생에 미치는 영향에 관한 유한요소법 연구)

  • Park, Sang-Il;Kim, Ye-Mi;Roh, Byoung-Duk
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.5
    • /
    • pp.442-449
    • /
    • 2009
  • The aim of this study was to examine that thick dentin bonding agent application or low modulus composite restoration could reduce stresses on dentin bonding agent layer. A mandibular first premolar with abfraction lesion was modeled by finite element method. The lesion was restored by different composite resins with variable dentin bonding agent thickness ($50{\mu}m$, $100{\mu}m$, $150{\mu}m$). 170N of occlusal loading was applied buccally or lingually. Von Mises stress on dentin bonding agent layer were measured. When thickness of dentin bonding agent was increased von Mises stresses at dentin bonding agent were decreased in both composites. Lower elastic modulus composite restoration showed decreased von Mises stresses. On root dentin margin more stresses were generated than enamel margin. For occlusal stress relief at dentin boning agent layer to applicate thick dentin bonding agent or to choose low elastic modulus composite is recommended.

Comparison of seismic progressive collapse distribution in low and mid rise RC buildings due to corner and edge columns removal

  • Karimiyan, Somayyeh
    • Earthquakes and Structures
    • /
    • v.18 no.5
    • /
    • pp.649-665
    • /
    • 2020
  • One of the most important issues in structural systems is evaluation of the margin of safety in low and mid-rise buildings against the progressive collapse mechanism due to the earthquake loads. In this paper, modeling of collapse propagation in structural elements of RC frame buildings is evaluated by tracing down the collapse points in beam and column structural elements, one after another, under earthquake loads and the influence of column removal is investigated on how the collapse expansion in beam and column structural members. For this reason, progressive collapse phenomenon is studied in 3-story and 5-story intermediate moment resisting frame buildings due to the corner and edge column removal in presence of the earthquake loads. In this way, distribution and propagation of the collapse in progressive collapse mechanism is studied, from the first element of the structure to the collapse of a large part of the building with investigating and comparing the results of nonlinear time history analyses (NLTHA) in presence of two-component accelograms proposed by FEMA_P695. Evaluation of the results, including the statistical survey of the number and sequence of the collapsed points in process of the collapse distribution in structural system, show that the progressive collapse distribution are special and similar in low-rise and mid-rise RC buildings due to the simultaneous effects of the column removal and the earthquake loads and various patterns of the progressive collapse distribution are proposed and presented to predict the collapse propagation in structural elements of similar buildings. So, the results of collapse distribution patterns and comparing the values of collapse can be utilized to provide practical methods in codes and guidelines to enhance the structural resistance against the progressive collapse mechanism and eventually, the value of damage can be controlled and minimized in similar buildings.

Comparison of seismic progressive collapse distribution in low and mid rise RC buildings due to corner and edge columns removal

  • Karimiyan, Somayyeh
    • Earthquakes and Structures
    • /
    • v.18 no.6
    • /
    • pp.691-707
    • /
    • 2020
  • One of the most important issues in structural systems is evaluation of the margin of safety in low and mid-rise buildings against the progressive collapse mechanism due to the earthquake loads. In this paper, modeling of collapse propagation in structural elements of RC frame buildings is evaluated by tracing down the collapse points in beam and column structural elements, one after another, under earthquake loads and the influence of column removal is investigated on how the collapse expansion in beam and column structural members. For this reason, progressive collapse phenomenon is studied in 3-story and 5-story intermediate moment resisting frame buildings due to the corner and edge column removal in presence of the earthquake loads. In this way, distribution and propagation of the collapse in progressive collapse mechanism is studied, from the first element of the structure to the collapse of a large part of the building with investigating and comparing the results of nonlinear time history analyses (NLTHA) in presence of two-component accelograms proposed by FEMA_P695. Evaluation of the results, including the statistical survey of the number and sequence of the collapsed points in process of the collapse distribution in structural system, show that the progressive collapse distribution are special and similar in low-rise and mid-rise RC buildings due to the simultaneous effects of the column removal and the earthquake loads and various patterns of the progressive collapse distribution are proposed and presented to predict the collapse propagation in structural elements of similar buildings. So, the results of collapse distribution patterns and comparing the values of collapse can be utilized to provide practical methods in codes and guidelines to enhance the structural resistance against the progressive collapse mechanism and eventually, the value of damage can be controlled and minimized in similar buildings.

Geochemical Studies of Petrogenesis of Hornblende Gabbro-Lamprophyre-Diorite Complex in Guwoonri, Hwacheon (화천 구운리 일대에 분포하는 각섬석 반려암-황반암-섬록암 복합체의 성인에 대한 지화학적 연구)

  • Kim, Guan-Young;Park, Young-Rok
    • The Journal of the Petrological Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.153-169
    • /
    • 2009
  • Hornblende gabbro-lamprophyre-diorite Complex in Guwoonri, Hwacheon distributes in a zonal pattern, where the diorite distributed along the margin of the Complex encompasses the hornblende gabbro body in the central part of the Complex, and lamprophyre intruded in vein along the boundary between diorite and hornblende gabbro. The hornblende gabbro in the central part of the Complex also shows a zonal distribution pattern, where hornblende gabbro containing subspherical amphibole phenocrysts as a major mafic mineral(Sag) surrounds hornblende gabbro with prismatic amphiboles as a principal mafic mineral(Pag). The zonal distributions observed in hornblende gabbro-lamprophyre-diorite Complex in Guwoonri resulted from two different geological processes. The zonal distribution among diorite, lamprophyre, and hornblende gabbro was due to intrusions of three distinct magmas derived from different degree of partial melting of a common source rock, whereas the zonal distribution shown within the hornblende gabbro body occupying the central part of the Complex resulted from an inward fractional crystallization of a single magma. Geochemical characteristics and mineral mode of hornblende gabbro, lamprophyre, and diorite indicate that these rocks formed from hydrous mafic to intermediate magma derived from partial melting of enriched mantle, which has been caused by infiltration of volatiles including water into mantle in plate margin.

통신위성 전력제어 및 분배장치 설계 및 해석

  • Choi, Jae-Dong
    • Aerospace Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.108-116
    • /
    • 2003
  • This research presents the design and analysis of PCDU(Power Control & Distribution Unit) of communication satellite. The PCDU of a spacecraft must provide adequate power to each subsystem and payload during mission life, and it also needs high reliability and performance in space environment. A control circuit of the PCDU include bus sensing and filter circuits, error signal amplification circuit, error compensation circuit of SAS(Shunt Assembly Switch) and BPC(Battery Power Converter). The phase margin and DC gain for the designed circuits are analyzed through the frequency response characteristics of the compensated control circuit. And also the transfer function of the battery power converter circuit are discussed at the battery CCCM(Charge Continuous Conduction Mode) and battery C/DCCM(Continuous/Discontinuous Conduction Mode).

  • PDF

Rain Attenuation Analysis for Designing UAV Data Link on Ku-Band (Ku대역 무인항공기 데이터 링크 설계를 위한 강우감쇠 분석)

  • Lee, Jaeyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.7
    • /
    • pp.1248-1256
    • /
    • 2015
  • It is necessary to apply an exact data and a precise prediction model for a rain attenuation to design the link margin for a data link using Ku-band with the serious effect by rain. In this paper, we investigate the regional rainfall-rate distribution of Korea proposed in TTAK.KO-06.0122/R1 and compare it with the distribution provided by Rec. ITU-R PN.837-1 and Crane. And, the rain rate climate regions similar with the rainfall-rate distribution of Korea in Rec. ITU-R PN.837-1 and Crane model are selected. Finally, using Rec. ITU-R P.618-8 and Crane rain attenuation prediction model, we derive and analyze the rain attenuation for Ku-band frequency according to the time percentage of an average year and the distance of wireless communication link between unmanned aerial vehicle (UAV) and ground data terminal (GDT).

ASSESSMENT OF CORE BYPASS FLOW IN A PRISMATIC VERY HIGH TEMPERATURE REACTOR BY USING UNIT-CELL EXPERIMENT AND CFD ANALYSIS (단위-셀 실험과 전산유체해석을 통한 블록형 초고온가스로의 노심우회유량 평가)

  • Yoon, S.J.;Jin, C.Y.;Kim, M.H.;Park, G.C.
    • Journal of computational fluids engineering
    • /
    • v.14 no.2
    • /
    • pp.59-67
    • /
    • 2009
  • An accurate prediction of the bypass flow is of great importance in the VHTR core design concerning the fuel thermal margin. Nevertheless, there has not been much effort in evaluating the amount and the distribution of the core bypass flow. In order to evaluate the behavior and the distribution of the coolant flow, a unit-cell experiment was carried out. Unit-cell is the regular triangular section which is formed by connecting the centers of three hexagonal blocks. Various conditions such as the inlet mass flow rate, block combinations and the size of bypass gap were examined in the experiment. CFD analysis was carried out to analyze detailed characteristics of the flow distribution. Commercial CFD code FLUENT 6.3 was validated by comparing with the experimental results. In addition, SST model and standard k-$\varepsilon$ model were validated. The results of CFD simulation show good agreements with the experimental results. SST model shows better agreement than standard k-$\varepsilon$ model. Results showed that block combinations and the size of the bypass gap have an influence on the bypass flow ratio but the inlet mass flow rate does not.

Biomechanical three-dimensional finite element analysis of monolithic zirconia crown with different cement type

  • Ha, Seung-Ryong
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.6
    • /
    • pp.475-483
    • /
    • 2015
  • PURPOSE. The objective of this study was to evaluate the influence of various cement types on the stress distribution in monolithic zirconia crowns under maximum bite force using the finite element analysis. MATERIALS AND METHODS. The models of the prepared #46 crown (deep chamfer margin) were scanned and solid models composed of the monolithic zirconia crown, cement layer, and prepared tooth were produced using the computer-aided design technology and were subsequently translated into 3-dimensional finite element models. Four models were prepared according to different cement types (zinc phosphate, polycarboxylate, glass ionomer, and resin). A load of 700 N was applied vertically on the crowns (8 loading points). Maximum principal stress was determined. RESULTS. Zinc phosphate cement had a greater stress concentration in the cement layer, while polycarboxylate cement had a greater stress concentration on the distal surface of the monolithic zirconia crown and abutment tooth. Resin cement and glass ionomer cement showed similar patterns, but resin cement showed a lower stress distribution on the lingual and mesial surface of the cement layer. CONCLUSION. The test results indicate that the use of different luting agents that have various elastic moduli has an impact on the stress distribution of the monolithic zirconia crowns, cement layers, and abutment tooth. Resin cement is recommended for the luting agent of the monolithic zirconia crowns.

A study on the uncertainty of setpoint for reactor trip system of NPPs considering rectangular distributions

  • Youngho Jin;Jae-Yong Lee;Oon-Pyo Zhu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1845-1853
    • /
    • 2024
  • The setpoint of the reactor trip system shall be set to consider the measurement uncertainty of the instrument channel and provide a reasonable and sufficient margin between the analytical limit and the trip setpoint. A comparative analysis was conducted to find out an appropriate uncertainty combination method through an example problem. The four methods were evaluated; 1) ISA-67.04.01 method, 2) the GUM95 method, 3) the modified GUM method developed by Fotowicz, and 4) the modified IEC61888 method proposed by authors for the pressure instrument channel presented in ISA-RP67.04.02 example. The appropriateness of each method was validated by comparing it with the result of Monte Carlo simulation. As a result of the evaluation, all methods are appropriate when all measurement uncertainty elements are normally distributed as expected. But ISA-67.04 method and GUM95 method overestimated the channel uncertainty if there is a dominant input element with rectangular distribution among the uncertainty input elements. Modified GUM95 methods developed by Fotowicz and modified IEC61888 method by authors are able to produce almost the same level of channel uncertainty as the Monte Carlo method, even when there is a dominant rectangular distribution among the uncertainty components, without computer-assisted simulations.