• Title/Summary/Keyword: distributed sensors

Search Result 408, Processing Time 0.03 seconds

Performance Enhancement of an Obstacle Avoidance Algorithm using a Network Delay Compensationfor a Network-based Autonomous Mobile Robot (네트워크 기반 자율이동 로봇을 위한 시간지연 보상을 통한 장애물 회피 알고리즘의 성능 개선)

  • Kim, Joo-Min;Kim, Jin-Woo;Kim, Dae-Won
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1898-1899
    • /
    • 2011
  • In this paper, we propose an obstacle avoidance algorithm for a network-based autonomous mobile robot. The obstacle avoidance algorithm is based on the VFH (Vector Field Histogram) algorithm and delay-compensative methods with the VFH algorithm are proposed for the network-based robot that is a unified system composed of distributed environmental sensors, mobile actuators, and the VFH controller. Firstly, the compensated readings of the sensors are used for building the polar histogram of the VFH algorithm. Secondly, a sensory fusion using the Kalman filter is proposed for the localization of the robot to compensate both the delay of the readings of an odometry sensor and the delay of the readings of the environmental sensors. The performance enhancements of the proposed obstacle avoidance algorithm from the viewpoint of efficient path generation and accurate goal positioning are also shown in this paper through some simulation experiments by the Marilou Robotics Studio Simulator.

  • PDF

Wireless Sensor for Diagnostics of Electric Equipments (전력 설비 감시를 위한 무선 센서)

  • Choi, Yong-Sung;Kim, Hyung-Gon;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04c
    • /
    • pp.98-102
    • /
    • 2008
  • Methods and analysis of a simple wireless sensor concept for detecting and locating faults as well as for load monitoring are presented. The concept is based on distributed wireless sensors that are attached to the incoming and outgoing power lines of secondary substations. A sensor measures only phase current characteristics of the wire it is attached to, is not synchronized to other sensors and does not need configuration of triggering levels. The main novelty of the concept is in detecting and locating faults by combining power distribution network characteristics on system level with low power sampling methods for individual sensors. This concept enables the sensor design to be simple, energy efficient and thus applicable in new installations and for retrofit purposes in both overhead and underground electrical distribution systems.

  • PDF

Application of Wireless Sensor for Diagnostics of Electric Equipments (전력 설비 진단을 위한 무선 센서의 응용)

  • Yun, Ju-Ho;Choi, Yong-Sung;Hwang, Jong-Sun;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.2112-2113
    • /
    • 2008
  • The concept is based on distributed wireless sensors that are attached to the incoming and outgoing power lines of secondary substations. A sensor measures only phase current characteristics of the wire it is attached to, is not synchronized to other sensors and does not need configuration of triggering levels. The main novelty of the concept is in detecting and locating faults by combining power distribution network characteristics on system level with low power sampling methods for individual sensors. This concept enables the sensor design to be simple, energy efficient and thus applicable in new installations and for retrofit purposes in both overhead and underground electrical distribution systems.

  • PDF

Application of structural health monitoring in civil infrastructure

  • Feng, M.Q.
    • Smart Structures and Systems
    • /
    • v.5 no.4
    • /
    • pp.469-482
    • /
    • 2009
  • The emerging sensor-based structural health monitoring (SHM) technology has a potential for cost-effective maintenance of aging civil infrastructure systems. The author proposes to integrate continuous and global monitoring using on-structure sensors with targeted local non-destructive evaluation (NDE). Significant technical challenges arise, however, from the lack of cost-effective sensors for monitoring spatially large structures, as well as reliable methods for interpreting sensor data into structural health conditions. This paper reviews recent efforts and advances made in addressing these challenges, with example sensor hardware and health monitoring software developed in the author's research center. The hardware includes a novel fiber optic accelerometer, a vision-based displacement sensor, a distributed strain sensor, and a microwave imaging NDE device. The health monitoring software includes a number of system identification methods such as the neural networks, extended Kalman filter, and nonlinear damping identificaiton based on structural dynamic response measurement. These methods have been experimentally validated through seismic shaking table tests of a realistic bridge model and tested in a number of instrumented bridges and buildings.

Development flexible force sensor using fiber bragg grating (광섬유 브래그 격자를 이용한 촉각센서용 유연 단위 힘 센서 개발)

  • Heo, Jin-Seok;Kim, Man-Sub;Lee, Jung-Ju
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.251-256
    • /
    • 2006
  • This paper describes the flexible force sensor using fiber Bragg grating (FBG) and silicone rubber for the tactile sensation to detect the distributed normal force. The newly designed FBG flexible force has simple structure and can be easily multiplexed with simple wiring compared with the other electric mechanical sensors. We designed the flexible silicone rubber transducer and found the optimum embedding position of FBG in the transducer using the finite element analysis. This flexible force sensor has good performance and is immunity to the electromagnetic field compared with any other kinds of small force sensors for tactile sensation.

Optimization of vertical SOI slot optical waveguide with confinement factor and sensitivity for integrated-optical biochemical sensors (구속계수와 감지도에 기반한 집적광학 바이오케미컬 센서에 적합한 수직 SOI 슬롯 광 도파로 최적화)

  • Jung, Hongsik
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.131-138
    • /
    • 2021
  • The optimization of the specifications of vertical silicon on insulator (SOI) slot optical waveguides suitable for integrated-optical biochemical sensors was performed through computational analysis of the confinement factor of the guided mode distributed in the slot in addition to analytical examination of the TE mode. The optimized specifications were confirmed based on sensitivity in terms of the change in the refractive index of the biochemical analyte. When the slot width, rail width, and height were set to 120 nm, 200 nm, and 320 nm, respectively, the confinement factor was evaluated to be about 56% and the sensitivity was at least 0.9 [RIU/nm].

Performance indicator of the atmospheric corrosion monitor and concrete corrosion sensors in Kuwait field research station

  • Husain, A.;Al-Bahar, Suad Kh.;Salam, Safaa A. Abdul
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.981-994
    • /
    • 2016
  • Two field research stations based upon atmospheric corrosivity monitoring combined with reinforced concrete corrosion rate sensors have been established in Kuwait. This was established for the purpose of remote monitoring of building materials performance for concrete under Kuwait atmospheric environment. The two field research sites for concrete have been based upon an outcome from a research investigation intended for monitoring the atmospheric corrosivity from weathering station distributed in eight areas, and in different regions in Kuwait. Data on corrosivity measurements are essential for the development of specification of an optimized corrosion resistance system for reinforced concrete manufactured products. This study aims to optimize, characterize, and utilize long-term concrete structural health monitoring through on line corrosion measurement and to determine the feasibility and viability of the integrated anode ladder corrosion sensors embedded in concrete. The atmospheric corrosivity categories supported with GSM remote data acquisition system from eight corrosion monitoring stations at different regions in Kuwait are being classified according to standard ISO 9223. The two nominated field sites where based upon time of wetness and bimetallic corrosion rate from atmospheric data where metals and rebar's concrete are likely to be used. Eight concrete blocks with embeddable anodic ladder corrosion sensors were placed in the atmospheric zone adjacent to the sea shore at KISR site. The anodic ladder corrosion rate sensors for concrete were installed to provide an early warning system on prediction of the corrosion propagation and on developing new insights on the long-term durability performance and repair of concrete structures to lower labor cost. The results show the atmospheric corrosivity data of the environment and the feasibility of data retrieval of the corrosion potential of concrete from the embeddable sets of anodic ladder corrosion sensors.

A Quasi-Distributed Fiber-Optic Sensor System using an InGaAs PD Array and FBG Sensors for the Safety Monitoring of Electric Power Systems (InGaAs PD 어레이와 광섬유 격자를 이용한 준분배형 전력설비 안전진단 시스템)

  • Kim, Hyun-Jin;Park, Hyoung-Jun;Song, Min-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.2
    • /
    • pp.86-91
    • /
    • 2010
  • We constructed a quasi-distributed fiber-optic sensor network for the safety monitoring in power systems. It is possible to construct many of FBG sensors in a line and to be immune from electromagnetic noise. For demodulation analysis of reflected wavelength from FBG sensor, we proposed a simple and fast system using a InGaAs photo-diode array and a holographic diffraction grating. For accuracy improvement of the proposed demodulation system, we applied a Gaussian line-fitting algorithm. We obtained about 4[pm] of wavelength resolution and stability.

Implementation of network architecture for a humanoid robot (휴머노이드 로봇의 네트워크 구조 구현)

  • Sung, Yu-Kyoung;Kong, Jung-Shik;Lee, Bo-Hee;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2397-2399
    • /
    • 2004
  • This paper deals with the messages scheduling of a CAN (Controller Area Network), based on the distributed control scheme to integrate actuators and sensors in a humanoid robot. In order to supply the distributed processing for a humanoid robot, each control unit should have the efficient control method, fast calculation and valid data exchange. The preliminary study has concluded that the performance of CAN is better and easier to implement than other network such as FIP (Factory Instrumentation Protocol), VAN (Vehicle Area Network), etc. Since humanoid robot has to treat the significant control signals from many actuators and sensors, the communication time limitation could be critical according to the transmission speed and data length of CAN specification. In this paper, the CAN message scheduling in humanoid robot was suggested under the presence of Jitter in the message group, the existence of high load of messages over the network and the presence of transmission errors. In addition, the response time under the worst case is compared with the simulation by using the simulation algorithm. As a result, the suggested messages scheduling can guarantee our CAN limitation, and utilized to generate the walking patterns for the humanoid.

  • PDF

Blind Waveform Estimation Scheme Based on ESPRIT for Nonuniform Linear Array MIMO Radars Using Distributed Multiple Electronic Sensors (분산 다중 전자전 센서를 이용한 ESPRIT 기반 비등간격 선형배열 MIMO 레이다의 암맹 직교신호 분리 기법)

  • Yeo, Kwanggoo;Chung, Wonzoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.11
    • /
    • pp.891-897
    • /
    • 2018
  • In this paper, we propose a blind estimation scheme for the antenna spacing of nonuniform linear array MIMO radar using distributed electronic sensors based on ESPRIT. We present a blind method to separate orthogonal waveforms of a MIMO radar based on the antenna spacing estimation. The estimated orthogonal waveforms of a MIMO radar can be used for disabling opponent MIMO radars.