• Title/Summary/Keyword: distributed power conversion

Search Result 75, Processing Time 0.026 seconds

Enhancement of Dye-Sensitized Solar Cell Efficiency by Spherical Voids in Nanocrystalline ZnO Electrodes

  • Hieu, Hoang Nhat;Dao, Van-Duong;Vuong, Nguyen Minh;Kim, Dojin;Choi, Ho-Suk
    • Korean Journal of Materials Research
    • /
    • v.24 no.9
    • /
    • pp.458-464
    • /
    • 2014
  • Light scattering enhancement is widely used to enhance the optical absorption efficiency of dye-sensitized solar cells. In this work, we systematically analyzed the effects of spherical voids distributed as light-scattering centers in photoanode films made of an assembly of zinc oxide nanoparticles. Spherical voids in electrode films were formed using a sacrificial template of polystyrene (PS) spheres. The diameter and volume concentration of these spheres was varied to optimize the efficiency of dye-sensitized solar cells. The effects of film thickness on this efficiency was also examined. Electrochemical impedance spectroscopy was performed to study electron transport in the electrodes. The highest power conversion efficiency of 4.07 % was observed with $12{\mu}m$ film thickness. This relatively low optimum thickness of the electrode film is due to the enhanced light absorption caused by the light scattering centers of voids distributed in the film.

The Control of Z-Source Inverter for using DC Renewable Energy (직류 대체에너지 활용을 위한 Z-원 인버터 제어)

  • Park, Young-San;Bae, Cherl-O;Nam, Taek-Kun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.2 s.29
    • /
    • pp.169-172
    • /
    • 2007
  • This paper presents circuit models and control algorithms of distributed generation system(DGS) which consists of Z-type converter and PWM inverter. Z-type converter which employs both the L and C passive components and shoot-through zero vectors instead qf the conventional DC/DC converter in order to step up DC-link voltage. Discrete time sliding mode control with the asymptotic observer is used for current control. This system am be used for power conversion of DC renewable energy.

  • PDF

Differential Power Processing System for the Capacitor Voltage Balancing of Cost-effective Photovoltaic Multi-level Inverters

  • Jeon, Young-Tae;Kim, Kyoung-Tak;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.1037-1047
    • /
    • 2017
  • The Differential Power Processing (DPP) converter is a promising multi-module photovoltaic inverter architecture recently proposed for photovoltaic systems. In this paper, a DPP converter architecture, in which each PV-panel has its own DPP converter in shunt, performs distributed maximum power point tracking (DMPPT) control. It maintains a high energy conversion efficiency, even under partial shading conditions. The system architecture only deals with the power differences among the PV panels, which reduces the power capacity of the converters. Therefore, the DPP systems can easily overcome the conventional disadvantages of PCS such as centralized, string, and module integrated converter (MIC) topologies. Among the various types of the DPP systems, the feed-forward method has been selected for both its voltage balancing and power transfer to a modified H-bridge inverter that needs charge balancing of the input capacitors. The modified H-bridge multi-level inverter had some advantages such as a low part count and cost competitiveness when compared to conventional multi-level inverters. Therefore, it is frequently used in photovoltaic (PV) power conditioning system (PCS). However, its simplified switching network draws input current asymmetrically. Therefore, input capacitors in series suffer from a problem due to a charge imbalance. This paper validates the operating principle and feasibility of the proposed topology through the simulation and experimental results. They show that the input-capacitor voltages maintain the voltage balance with the PV MPPT control operating with a 140-W hardware prototype.

A Magnetic Energy Recovery Switch Based Terminal Voltage Regulator for the Three-Phase Self-Excited Induction Generators in Renewable Energy Systems

  • Wei, Yewen;Kang, Longyun;Huang, Zhizhen;Li, Zhen;Cheng, Miao miao
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1305-1317
    • /
    • 2015
  • Distributed generation systems (DGSs) have been getting more and more attention in terms of renewable energy use and new generation technologies in the past decades. The self-excited induction generator (SEIG) occupies an important role in the area of energy conversion due to its low cost, robustness and simple control. Unlike synchronous generators, the SEIG has to absorb capacitive reactive power from the outer device aiming to stabilize the terminal voltage at load changes. This paper presents a novel static VAR compensator (SVC) called a magnetic energy recovery switch (MERS) to serve as a voltage controller in SEIG powered DGSs. In addition, many small scale SEIGs, instead of a single large one, are applied and devoted to promote the generation efficiency. To begin with, an expandable mathematic model based on a d-q equivalent circuit is created for parallel SEIGs. The control method of the MERS is further improved with the objective of broadening its operating range and restraining current harmonics by parameter optimization. A hybrid control strategy is developed by taking both of the stand-alone and grid-connected modes into consideration. Then simulation and experiments are carried out in the case of single and double SEIG(s) generation. Finally, the measurement results verify that the proposed DGS with SVC-MERS achieves a better stability and higher feasibility. The major advantages of the mentioned variable reactive power supplier, when compared to the STATCOM, include the adoption of a small DC capacitor, line frequency switching, simple control and less loss.

Design Study of Fuel Supply System for 5MW-class Bio Gasturbine by Using Food Waste Water (5MW급 바이오 가스터빈용 전처리시스템 설계연구)

  • Hur, Kwang-Beom;Park, Jung-Keuk;Yun, Eun-Young;Lee, Jung-Bin
    • New & Renewable Energy
    • /
    • v.7 no.2
    • /
    • pp.10-17
    • /
    • 2011
  • Korea is the 11th largest energy consumption country and 96% of its total energy consumption depends on imports from overseas. Therefore it is a very important task to secure renewable energy sources which can reduce both the carbon-dioxide emission and dependency on overseas energy imports. Among the various renewable energy sources, organic wastes are important sources. In Korea, 113 million toe of methane is generated from organic wastes annually, but only 3.7% is effectively used for energy conversion. Thus, it is very important to make better use of organic wastes, especially for power generation. The goals of this project are to develope the fuel supplying system of Bio Gasturbine (GT) for 5MW-class co-generation system. The fuel supplying system mainly consists of $H_2S$ removal system, Bio Gas compression system, Siloxane removal system and moisture separating systems. The fuel requirement of 5MW-class GT is at around 60% of $CH_4$, $H_2S$ (<30 ppm), Siloxane(<10 mg/$nm^3$) and supply pressure (> 25 bar) from biogas compressor. Main mechnical charateristics of Bio Gasturbine system have the specific performance; 1) high speed turbine speed (12,840 rpm) 2) very clean emmission NOx (<50 ppm) 3) high efficiency of energy conversion rate. This paper focuses on the development of design technology for food waste biogas pretreatment system for 5MW-class biogas turbine. The study also has the plan to replace the fuel of gas turbine and other distributed power systems. As the increase of bioenergy, this system help to contribute to spread more New & Renewable Energy and the establishment of Renewable Portfolio Standards (RPS) for Korea.

Hybrid Excitation Control of SRM Drive for Reduction of Vibration and Acoustic Noise

  • Lee, Dong-Hee;Lee, Sang-Hun;Ahn, Jin-Woo;Park, Sung-Jun
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.11B no.4
    • /
    • pp.151-155
    • /
    • 2001
  • The simple motor construction and low cost, fault tolerant power electronic drive has made the switched reluctance drive a strong contender for many applications. But the switched reluctance drive does exhibit higher levels of vibration and acoustic noise than that of most competing drives. The main source of vibration in the switched reluctance drive is generated by rapid change of radial magnetic force when phase current is extinguished during commutation action. In this paper, a hybrid excitation method is proposed to reduce vibration and acoustic noise of the switched reluctance drive. The hybrid excitation has 2-phase excitation by long dwell angle as well as conventional 1-phase excitation. The vibration and acoustic noise are reduced because the scheme reduces abrupt change of excitation level by distributed and balanced excitation.

  • PDF

Design of High Capacity Rectifier by Parallel Driving of MOSFET (MOSFET 병렬 구동을 이용한 대용량 정류기 구현)

  • Sun, Duk-Han;Cho, Nae-Su;Kim, Woo-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.4
    • /
    • pp.227-233
    • /
    • 2007
  • In case of design of a rectifier to supply high current, To select switching frequency of semiconductor switches affect absolutely the design of the LC filter value in an power conversion circuit. The conventional rectifier by using MOSFET is no use in high current equipments because of small drain-source current. To solve this problem, this paper proposes to design of high capacity rectifier by parallel driving of MOSFET in the single half bridge DC-DC converter. This method can be able to develop high current rectifier by distributed drain-source current. The proposed scheme is able to expect a decrease in size, weight and cost of production by decreasing the LC filter value and increasing maximumly the switching frequency. The validity of the proposed parallel driving strategy is verified through computer-aided simulations and experimental results.

  • PDF

Development of a Large capacity Rectifier for using Full-Bridge Type (풀 브리지 방식을 이용한 대용량 정류기 구현)

  • Lee, Je-Min;Yun, Kyung-Sub;Lim, Sung-Woon;Kim, Woo-Hyun;Kwon, Woo-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.277-279
    • /
    • 2005
  • Generally, It was used to use a unit of a Large regularity in developing Large Capacity Converter System of the electric power. Lager a capacity of a unit of regularity, more expensive cost of it. So, normally, We overcome the limit of a proper form of an electricity semiconductor which be used in application field of Large capacity electricity conversion system through the Composition of Multi-level Circuit or Dual-Mode or parallel switch. but some problem is discussed. Using parallel RC-diode circuit instead of Large Capacity diode, We implemented a circuit that it overcome the limit of a regularity with dealing current distributed by parallel RC-diode circuit.

  • PDF

An Efficient Architecture of Transform & Quantization Module in MPEG-4 Video Codec

  • Kibum suh;Song, In-Kuen
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.2067-2070
    • /
    • 2002
  • In this paper, a VLSI architecture for transform and quantization module, which consists of 2D-DCT, quantization, AC/DC prediction block, scan conversion, inverse quantization and 2D-IDCT, is presented. The architecture of the module is designed to handle a macroblock data within 1064 cycles and suitable for MPEG-4 video codec handling CIF image formats. Only single 1-D DCT/IDCT cores are used for the design instead of 2-D DCT/IDCT, respectively. 1-bit serial distributed arithmetic architecture is adopted for 1-D DCT/IDCT to reduce the hardware area in this architecture. As the result, the maximum utilization of hardware can be achieved, and power consumption can be minimized. The proposed design is operated on 27MHz clock. The experimental results show that the accuracy of DCT and IDCT meet the IEEE specification.

  • PDF

A Bidirectional Dual Buck-Boost Voltage Balancer with Direct Coupling Based on a Burst-Mode Control Scheme for Low-Voltage Bipolar-Type DC Microgrids

  • Liu, Chuang;Zhu, Dawei;Zhang, Jia;Liu, Haiyang;Cai, Guowei
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1609-1618
    • /
    • 2015
  • DC microgrids are considered as prospective systems because of their easy connection of distributed energy resources (DERs) and electric vehicles (EVs), reduction of conversion loss between dc output sources and loads, lack of reactive power issues, etc. These features make them very suitable for future industrial and commercial buildings' power systems. In addition, the bipolar-type dc system structure is more popular, because it provides two voltage levels for different power converters and loads. To keep voltage balanced in such a dc system, a bidirectional dual buck-boost voltage balancer with direct coupling is introduced based on P-cell and N-cell concepts. This results in greatly enhanced system reliability thanks to no shoot-through problems and lower switching losses with the help of power MOSFETs. In order to increase system efficiency and reliability, a novel burst-mode control strategy is proposed for the dual buck-boost voltage balancer. The basic operating principle, the current relations, and a small-signal model of the voltage balancer are analyzed under the burst-mode control scheme in detail. Finally, simulation experiments are performed and a laboratory unit with a 5kW unbalanced ability is constructed to verify the viability of the bidirectional dual buck-boost voltage balancer under the proposed burst-mode control scheme in low-voltage bipolar-type dc microgrids.