• Title/Summary/Keyword: distributed motion control

Search Result 78, Processing Time 0.033 seconds

Development of a Distributed Motion Controller Using CAN

  • Cho, Myoung-Chol;Jeon, Jae-Wook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.43.2-43
    • /
    • 2002
  • $\textbullet$ A PC can control the fixed number of motors because the number of slots is limited. $\textbullet$ We propose a distributed motion controller using CAN. $\textbullet$ TMS320F243 of TI Which is a DSP with embedded CAN-module was used as the main processor. $\textbullet$ The command from GUI is transmitted to each motion controller through CAN-bus $\textbullet$ CAN communications may occur at a maximum recommended rate of 1Mbit/sec. $\textbullet$ The user can control more motors easily by connecting to the CAN network which has the CAN receive. $\textbullet$ This distributed motion controller may be used usefully in factory automation or an unmanned factory.

  • PDF

Development of a Distributed Multi-rate Motion Control System Using USB

  • Rhim, Sung-Soo;Lee, Soon-Geul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.753-757
    • /
    • 2004
  • This paper describes a PC-based distributed multi-rate realtime control system using USB protocol, which is developed as a general motion controller. The control system consists of two control programs: one running at 1 kHz sampling rate on a PC with Linux and another running at 10 kHz sampling rate on a remotely located motion control card called RASID (remote axis serial interface device). Two programs communicates through USB at every 1 msec. A USB communication driver is developed to ensured the 1 msec desired communication time. The main program running on the PC generates reference trajectory at 1 kHz and send it to the RASID through USB and RASIDs located near the motors gather the sensor information and execute the low-level control at 10 kHz. The USB-based connectivity reduces the wiring harness and eventually the manufacturing cost of the machine. The multi-rate nature of the developed system improves the control capability. The effect of sampling rate is analyzed and simulated.

  • PDF

A Study on the PC-Based Motion Controller Design for Multi-Axis Control (다축 제어용 PC-Based Motion Controller 설계에 관한 연구)

  • 안호균
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.641-644
    • /
    • 2000
  • Recently As the performance of the personal computer has been improving rapidly lots of research for the pc-based numerical computer actively progress in an easy repair maintenance and improving the performance with less cost. This paper presents the design using complex programmable logic device(CPLD). The CPU of Motion Controller that function as the real time control of the independent multi-axis motion the error-detect module and external I/O control made use of 80C196KC, In this paper The PC-NC effectively distributed to the load of NCK(numerical computer kernel) and have the advantage of high speed and precision.

  • PDF

Development of Intelligent Bed Robot System

  • Oh, Chang-Mok;Seo, Kap-Ho;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1535-1538
    • /
    • 2004
  • In this paper, an Intelligent Bed Robot System (IBRS) is proposed, that is a special bed equipped with robot manipulator. To assist a patient using IBRS, pose and motion estimation process is fundamental. It is designed to help the elderly and the disabled for their independent life in bed without other assistants. For this purpose, we use the pressure sensor distributed mattress for detecting the change of motion on the bed. Using that data, we control the robot arm to move to the appropriate position and serve to the user. In addition, we can estimate the user's intention based on the change of pressure and use those data to control the robot arm guide.

  • PDF

Development of Bent Glass Automatic Shaping System using PC-based Parallel Distributed Control Scheme (PC기반 병렬 분산제어방식을 이용한 곡면유리 자동성형기 개발)

  • 양근호
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.1
    • /
    • pp.40-45
    • /
    • 2004
  • This paper presents the parallel distributed control scheme for shaping of the bent glass. The designed system consists of a PC, a main controller and 11 servo-controllers, the precision motion controllers. Each elements are connected by using RS-232C and 8-bit data bus. In order to guarantee the stability and the control performance, we use a precision PID motion controller and a H-bridge on the servo-drivers. PC calculates position values of 11 DC motors by using the pre-determined curvature value and offers the user interface environment operator. The main controller provides the control instructions and parameter values to 11 servo-controllers by chip enable signal, simultaneously. Using the received commands and parameter values, the servo-controllers control the positions of the DC motors based on PID control scheme.

  • PDF

Intelligent Control of Industrial Robot Using Neural Network with Dynamic Neuron (동적 뉴런을 갖는 신경회로망을 이용한 산업용 로봇의 지능제어)

  • 김용태
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.133-137
    • /
    • 1996
  • This paper presents a new approach to the design of neural control system using digital signal processors in order to improve the precision and robustness. Robotic manipulators have bevome increasingly important in the field of flexible automation. High speed and high-precision trajectory tracking arre indispensable capabilities for their versatile application. the need to meet demanding control requirement in increasingly complex dynamical control systems under sygnificant uncertainties leads toward design of implementing real time neural control to provide an enhanced motion control for robotic manipulators. In this control scheme the ntworks intrduced are neural nets with dynamic neurouns whose dynamics are distributed over all the network nodes. The nets are trained by the distributed dynamic are distributed over all the network nodes. The nets are trained by the distributed dynamic back propagation algorithm. The proposed neural network control scheme is simple in structure fast in computation and suitable for implementation of real-time control, Performance of the neural controller is illustrated by simulation and experimental results for a SCAEA robot.

  • PDF

Distributed Control of a Two Axis Convey Table Using Real-time Micro-Kernel (마이크로 커널을 이용한 2축 반송 테이블의 분산제어)

  • 이건영
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.3
    • /
    • pp.182-187
    • /
    • 2004
  • In this paper, we propose a PC based distributed controller for a two axis convey table using real-time micro-kernel. PC, Windows program, gives an easy way to implement wealthy GUI and micro-kernel, ${\mu}$C/OS-II, provides a real-time capability to control devices. We built a real-time distributed control system using ${\mu}$C/OS-II kernel which needs to process the tasks for two motors within the desired time to synchronize the motion. We used both semaphore and message mail box for synchronization. Unlike the previous study where we used step motors for the actuator of two axes convey table, we rebuilt the convey table with DC motors and the dedicated position servo which had built in out lab, and then we implemented a realtime distributed control system by putting the micro-kernel into between PC and position servo. Moreover we developed the PC based graphic user interfaces for generating planar drawing image control. Experimental results also presented to show the Proposed control system is useful.

Distributed parameters modeling for the dynamic stiffness of a spring tube in servo valves

  • Lv, Xinbei;Saha, Bijan Krishna;Wu, You;Li, Songjing
    • Structural Engineering and Mechanics
    • /
    • v.75 no.3
    • /
    • pp.327-337
    • /
    • 2020
  • The stability and dynamic performance of a flapper-nozzle servo valve depend on several factors, such as the motion of the armature component and the deformation of the spring tube. As the only connection between the armature component and the fixed end, the spring tube plays a decisive role in the dynamic response of the entire system. Aiming at predicting the vibration characteristics of the servo valves to combine them with the control algorithm, an innovative dynamic stiffness based on a distributed parameter model (DPM) is proposed that can reflect the dynamic deformation of the spring tube and a suitable discrete method is applied according to the working condition of the spring tube. With the motion equation derived by DPM, which includes the impact of inertia, damping, and stiffness force, the mathematical model of the spring tube dynamic stiffness is established. Subsequently, a suitable program for this model is confirmed that guarantees the simulation accuracy while controlling the time consumption. Ultimately, the transient response of the spring tube is also evaluated by a finite element method (FEM). The agreement between the simulation results of the two methods shows that dynamic stiffness based on DPM is suitable for predicting the transient response of the spring tube.

$H{\infty}$-force control of a artificial finger with distributed force sensor and piezoelectric actuator (분포센서를 가진 인공지의 $H{\infty}$-힘제어)

  • ;;;;Seiji Chonan
    • Journal of KSNVE
    • /
    • v.6 no.5
    • /
    • pp.555-565
    • /
    • 1996
  • This paper is concerned with the theoretical and experimental study on the force control of a miniature robotic finger that grasps an object at three other positions with the fingertip. The artificial finger is a uniform flexible cantilever beam equipped with a distributed set of compact grasping force sensors. Control action is applied by a piezoceramic bimorph strip placed at the base of the finger. The mathematical model of the assembled electro- mechanical system is developed. The distributed sensors are described by a set of concentrated mass-spring system. The formulated equations of motion are then applied to a control problem in which the finger is commanded to grasp an object. The H$_{\infty}$-controller is introduced to drive the finger. The usefulness of the proposed control technique is verified by simulation and experiment..

  • PDF