• Title/Summary/Keyword: distributed generation system

Search Result 676, Processing Time 0.033 seconds

A Study on the Reliability Evaluation of Power Distribution System with Distributed Generations using Power Supplied Probability (전력공급확률을 이용한 분산형 전원을 고려한 배전계통 신뢰도 평가에 관한 연구)

  • Lee, Hee-Tae;Moon, Jong-Fil;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2119-2124
    • /
    • 2010
  • Reliability evaluation of power distribution system is the evaluation for all customers supplied from one power source as main transformer located in substation. However, power sources include not only the main transformer but distributed generations. Typical reliability evaluation has focused on configuration of power system with one source including failure rates of equipment. In this paper, we focus on not only configuration but power sources as distributed generations. New reliability evaluation method using power supplied probability (PSP) is proposed. The proposed evaluation method are proved through case studies.

Issues in Next Generation Streaming Server Design

  • Won, Youjip
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.335-354
    • /
    • 2001
  • .Next Generation Multimedia Streaming Technology Massive Scale Support $\rightarrow$ Clustered Solution Adaptive to Heterogeneous Network daptive to Heterogeneous Terminal Capability Presentation Technique .SMART Server Architecture .HERMES File System .Clustered Solution . High Speed Storage Interconnect .' Content Partitioning . Load Management . Support for Heterogeniety . Adaptive End to End Streaming Transport: Unicast vs. Multicast '. Scalable Encoding

  • PDF

Optimized Design and Coordinated Control for Stand-alone DC Micro-grid (독립형 DC 마이크로그리드의 최적화 설계와 협조적 제어)

  • Han, Tae-Hee;Lee, Ji-Heon;Kim, Hyun-Jun;Han, Byung-Moon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.63-71
    • /
    • 2013
  • This paper describes the coordinated droop control method for stand-alone type DC micro-grid to improve reliability and utilization of distributed generations and energy storage. The stand-alone type DC micro-grid consists of several distributed generations such as a wind power generation, solar power and micro-turbine, and energy storage. The proposed method which is based on autonomous control method shows high reliability and stability through coordinated droop control of distributed generations and energy storage and also capability of battery management. The operation of stand-alone type DC micro-grid was analyzed using detail simulation model with PSCAD/EMTDC software. Based on simulation results, a hardware simulator was built and tested with commercially available components and performance of system was verified.

Modeling of Practical Photovoltaic Generation System using Controllable Current Source based Inverter (제어 가능한 전류원 기반의 인버터를 이용한 실제적 태양광 발전 시스템 모델링)

  • Oh, Yun-Sik;Cho, Kyu-Jung;Kim, Min-Sung;Kim, Ji-Soo;Kang, Sung-Bum;Kim, Chul-Hwan;Lee, You-Jin;Ko, Yun-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.8
    • /
    • pp.1340-1346
    • /
    • 2016
  • Utilization of Distributed Generations (DGs) using Renewable Energy Sources (RESs) has been constantly increasing as they provide a lot of environmental, economic merits. In spite of these merits, some problems with respect to voltage profile, protection and its coordination system due to reverse power flow could happen. In order to analyze and solve the problems, accurate modeling of DG systems should be preceded as a fundamental research task. In this paper, we present a PhotoVoltaic (PV) generation system which consists of practical PV cells with series and parallel resistor and an inverter for interconnection with a main distribution system. The inverter is based on controllable current source which is capable of controlling power factors, active and reactive powers within a certain limit related to amount of PV generation. To verify performance of the model, a distribution system based on actual data is modeled by using ElectroMagnetic Transient Program (EMTP) software. Computer simulations according to various conditions are also performed and it is shown from simulation results that the model presented is very effective to study DG-related researches.

A Synthetical Study on Power Quality Measurement of Grid-Connected Wind Turbine Generating System based on the IEC International Standards (IEC 국제표준에 따른 계통연계형 풍력터빈 발전기계통의 전력품질 측정방법에 관한 심화연구)

  • Cho, Soo-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.2
    • /
    • pp.197-204
    • /
    • 2014
  • As more and more renewable energy resources are connected into the existing power system and their generation capacities are increasing, the need for regulations to minimize their impacts on the power grid is increasingly growing. And minimizing the irregular impacts made by grid-connected wind generators is important, since the output power generated by renewable energy resources can be changed easily by the weather condition and surrounding environment. In South Korea, an operational technical standard for distributed generation is used as a regulation, in which renewable energy sources including wind power are considered as a kind of distributed generation. In this paper, an international standard, IEC 61400-21, for the grid-connected wind turbine generating system(WTGS) will be introduced and a comprehensive and detailed review on the measuring methods of power quality characteristic parameters for WTGS based on the related IEC standards will be presented. Additionally, some prerequisites for applying the international standards to KEPCO system will be proposed.

Design End Implementation of Automated Component Generation System on Distributed Environment (분산환경에서 컴포넌트 자동생성 시스템 설계 및 구현)

  • Cheon Sang-Ho;Kweon Ki-Hyeon;Choi Hyung-Jin
    • Journal of Digital Contents Society
    • /
    • v.2 no.1
    • /
    • pp.21-30
    • /
    • 2001
  • This paper presents the automated component generation system to support development of web application by the Model 2 framework on distributed environment. Model 2 framework is based on MVC(Model View Controller) model and this model capsulate the functionality of web application and have the benefits like extensibility, maintainability, resuability. In this paper, we propose a framework which is adapted in JSP environment and implement the automated component generation system. This system can efficiently utilized for web application development which require extensibility, maintainability, resuability as well as rapid web application development.

  • PDF

Optimal DG Placement in a Smart Distribution Grid Considering Economic Aspects

  • Buaklee, Wirote;Hongesombut, Komsan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1240-1247
    • /
    • 2014
  • The applications of Distributed Generation (DG) in a smart distribution grid environment are widely employed especially for power balancing and supporting demand responses. Using these applications can have both positive and negative impacts on the distribution system. The sizing and location of their installations are the issues that should be taken into consideration to gain the maximum benefit from them when considering the economic aspects. This paper presents an application of the Bat Algorithm (BA) for the optimal sizing and siting of DG in a smart distribution power system in order to maximize the Benefit to Cost Ratio (BCR), subjected to system constraints including real and reactive power generation, line and transformer loading, voltage profile, energy losses, fault level as well as DG operating limits. To demonstrate the effectiveness of the proposed methodology and the impact of considering economic issues on DG placement, a simplify 9-bus radial distribution system of the Provincial Electricity Authority of Thailand (PEA) is selected for the computer simulation to explore the benefit of the optimal DG placement and the performance of the proposed approach.

Power Control and Ground Fault Simulations for a Distribution System with a Fuel Cell Power Plant

  • Hwang, Jin-Kwon;Choi, Tae-Il
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.7
    • /
    • pp.9-19
    • /
    • 2010
  • Fuel cell (FC) distributed generation (DG) is gradually becoming more attractive to mainstream electricity users as capacity improves and costs decrease. New technologies including inverters are becoming available to provide a uniform standard interconnection of DGs with an electric power system. Some of the operating conflicts and the effect of DG on power quality are addressed and investigated through simulations on a real distribution network with an FC power plant. The results of these simulations have proved load tracking capability following the real and reactive power change of the load and have shown the flow of overcurrent from an FC power plant during the ground fault of a distribution line.

Analysis of the Protective Coordination considering the superconducting fault current limiter in Distribution System with Distributed Generation (분산전원 연계 계통에 초전도한류기 적용 시 보호협조 분석)

  • Seo, Hun-Chul;Ko, Yun-Tae;Rhee, Sang-Bong;Kim, Chul-Hwan;Kim, Jae-Chul;Hyun, Ok-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.137_138
    • /
    • 2009
  • The increasing of fault current by introducing of the distributed generation(DG) in distribution system disrupts the protective coordination. Therefore, this paper applies the superconducting fault current limiter(SFCL) to solve this problem. The distribution system with DG and SFCL is modeled by EMTP. According to various size of the DG, the fault is simulated and the operating time of overcurrent relay is investigated accoring to the resistance of SFCL.

  • PDF

Adaptive Protection Algorithm for Overcurrent Relay in Distribution System with DG

  • Sung, Byung Chul;Lee, Soo Hyoung;Park, Jung-Wook;Meliopoulos, A.P.S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1002-1011
    • /
    • 2013
  • This paper proposes the new adaptive protection algorithm for inverse-time overcurrent relays (OCRs) to ensure their proper operating time and protective coordination. The application of the proposed algorithm requires digital protection relays with microcontroller and memory. The operating parameters of digital OCRs are adjusted based on the available data whenever system conditions (system with distributed generation (DG)) vary. Moreover, it can reduce the calculation time required to determine the operating parameters for achieving its purpose. To verify its effectiveness, several case studies are performed in time-domain simulation. The results show that the proposed adaptive protection algorithm can keep the proper operating time and provide the protective coordination time interval with fast response.