• Title/Summary/Keyword: distributed fiber optic sensing

Search Result 27, Processing Time 0.033 seconds

Experimental investigations on detecting lateral buckling for subsea pipelines with distributed fiber optic sensors

  • Feng, Xin;Wu, Wenjing;Li, Xingyu;Zhang, Xiaowei;Zhou, Jing
    • Smart Structures and Systems
    • /
    • v.15 no.2
    • /
    • pp.245-258
    • /
    • 2015
  • A methodology based on distributed fiber optic sensors is proposed to detect the lateral buckling for subsea pipelines in this study. Uncontrolled buckling may lead to serious consequences for the structural integrity of a pipeline. A simple solution to this problem is to control the formation of lateral buckles among the pipeline. This firms the importance of monitoring the occurrence and evolution of pipeline buckling during the installation stage and long-term service cycle. This study reports the experimental investigations on a method for distributed detection of lateral buckling in subsea pipelines with Brillouin fiber optic sensor. The sensing scheme possesses the capability for monitoring the pipeline over the entire structure. The longitudinal strains are monitored by mounting the Brillouin optical time domain analysis (BOTDA) distributed sensors on the outer surface of the pipeline. Then the bending-induced strain is extracted to detect the occurrence and evolution of lateral buckling. Feasibility of the method was validated by using an experimental program on a small scale model pipe. The results demonstrate that the proposed approach is able to detect, in a distributed manner, the onset and progress of lateral buckling in pipelines. The methodology developed in this study provides a promising tool for assessing the structural integrity of subsea pipelines.

A Study on the Comparison between an Optical Fiber and a Thermal Sensor Cable for Temperature Monitoring (온도 모니터링을 위한 광섬유 센서와 온도센서 배열 케이블의 비교 연구)

  • Kim, Jung-Yul;Song, Yoon-Ho;Kim, Yoo-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.15-24
    • /
    • 2007
  • Two kinds of temperature monitoring technology have been introduced in this study, which can measure coincidently temperatures at many points along a single length of cable. One is to use a thermal sensor cable comprizing of addressable thermal sensors. The other is to use an optic fiber sensor with Distributed Temperature Sensing (DTS) system. The differences between two technologies can be summarized as follows: A thermal sensor cable has a concept of "point sensing" that can measure temperature only at a predefined position. The accuracy and resolution of temperature measurement are up to the capability of the individual thermal sensor. On the other hand, an optic fiber sensor has a concept of "distributed sensing" because temperature is measured practically at all points along the fiber optic cable by analysing the intensity of Raman back-scattering when a laser pulse travels along the fiber. Thus, the temperature resolution depends on the measuring distance, measuring time and spatial resolution. The purpose of this study is to investigate the applicability of two different temperature monitoring techniques in technical and economical sense. To this end, diverse experiments with two techniques were performed and two techniques are applied under the same condition. Considering the results, the thermal sensor cable will be well applicable to the assessment of groundwater flow, geothermal distribution and grouting efficiency within about loom distance, and the optic fiber sensor will be suitable for long distance such as pipe line inspection, tunnel fire detection and power line monitoring etc.

Health Monitoring Technology using Optic Fibre Sensors for Ships and Marine Equipment (광섬유센서를 이용한 선박 및 해양기자재의 안전진단 기술)

  • Lee, Sei-Chang;Kim, Jong-Ho;Kim, Jung-Yul;Kim, Yoo-Sung
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.275-276
    • /
    • 2006
  • 선박 및 해양기자재의 안전 진단을 위한 기존의 기술은 접 센서(point sensor)를 이용한 변형률 측정 기술이 대부분이라 할 수 있다. 본 논문은 기존의 기술보다 효율적으로 응용될 수 있는 광섬유 센서를 이용한 분포 개념의 온도 및 변형률 측정(DTSS: Distributed Temperature & Strain Sensing) 기술에 대해 소개하고 있다. 이 기술은 선체 응력 모니터링, 해양 구조물 안전진단, subsea flowline 모니터링, platform의 riser 안정성, umbilical 모니터링 등에 활용될 수 있다.

  • PDF

The study on the fiber optic sensor for the distributed temperature measurement (분포온도 계측을 위한 광파이버 온도센서 시스템에 관한 연구)

  • 이광진;최성구;노도환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1746-1749
    • /
    • 1997
  • A distributed optical fiber temperature sensor can continually monitor the measurand at every point along of its fiber length. It is based on OTDR technics which used extreamlly weak backward scattered light called Raman scattering. When the Pulsed high intensity laser light injected into the optical fiber there are several kind of backscattered light such as Rayleigh, Stokes, and anti-Stokes, etc. caused by impurities molecular vibrations. The temperature distribution is derived form the intensity ratio Raman scatted light-Stokes versus anti-Stokes-and the time function between light injection and signal detection. It is shown that the priniciple of distributed sensing, the system desing, and the result of experiments.

  • PDF

Case Studies on Distributed Temperature and Strain Sensing(DTSS) by using an Optical fiber (광섬유 센서를 이용한 온도 및 변형 모니터링에 대한 현장응용 사례)

  • Kim, Jung-Yul;Kim, Yoo-Sung;Lee, Sung-Uk;Min, Kyoung-Ju;Park, Dong-Su;Pang, Gi-Sung;Kim, Kang-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.86-95
    • /
    • 2006
  • Brillouin backscatter is a type of reflection that occurs when light is shone into an optical fibre. Brillouin reflections are very sensitive to changes in the fibre arising from external effects, such as temperature, strain and pressure. We report here several case studies on the measurement of strain using Brillouin reflections. A mechanical bending test of an I beam, deployed with both fiber optic sensors and conventional strain gauge rosettes, was performed with the aim of evaluating: (1) the capability and technical limit of the DTSS technology for strain profile sensing; (2) the reliability of strain measurement using fiber optic sensor. The average values of strains obtained from both DTSS and strain gauges (corresponding to the deflection of I beam) showed a linear relationship and an excellent one-to-one match. A practical application of DTSS technology as an early warning system for land sliding or subsidence was examined through a field test at a hillside. Extremely strong, lightweight, rugged, survivable tight-buffered cables, designed for optimal strain transfer to the fibre, were used and clamped on the subsurface at a depth of about 50cm. It was proved that DTSS measurements could detect the exact position and the progress of strain changes induced by land sliding and subsidence. We also carried out the first ever distributed dynamic strain measurement (10Hz) on the Korean Train eXpress(KTX) railway track in Daejeon, Korea. The aim was to analyse the integrity of a section of track that had recently been repaired. The Sensornet DTSS was used to monitor this 85m section of track while a KTX train passed over. In the repaired section the strain increases to levels of 90 microstrain, whereas in the section of regular track the strain is in the region of 30-50 microstrain. The results were excellent since they demonstrate that the DTSS is able to measure small, dynamic changes in strain in rails during normal operating conditions. The current 10km range of the DTSS creates a potential to monitor the integrity of large lengths of track, and especially higher risk sections such as bridges, repaired track and areas at risk of subsidence.

  • PDF

Novel Fiber Optic Microbend Sensor for the Measurement of Cable's Curvature (케이블의 곡률 측정을 위한 새로운 형태의 광섬유 마이크로벤드 센서 개발)

  • Oh, Sang-Woo;Choi, Hyeuk-Jin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.4
    • /
    • pp.289-295
    • /
    • 2009
  • In this paper the measurement method of cable's curvature using fiber optic microbend effect and its experimental results are presented. The novel structure of fiber optic microbender, which can generate microbend effect on the optical fiber in the case of both directional bending of cable, was designed. Through the experiment using suggested sensing system, the increasing trend of attenuated optical power was found out under the range from $0.1\;cm^{-1}$ to $0.4\;cm^{-1}$ of curvature. To the multi and distributed measurement, using OTDR, the scattered optical pulses at the bending points are measured and compared with the result which was measured by optical power meter.

  • PDF

A study on the optical fiber diagnostics using rayleigh back-scattering (Rayleigh 억신란광을 이용한 광파이비 진단에 관한 연구)

  • Kim, Y.H.;Oh, S.K.;Kim, I.S.;Park, H.S.;Roh, J.D.;Kim, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1890-1892
    • /
    • 1997
  • In this paper, we have designed and fabricated high speed signal processing unit, optical driver and sensing unit in order to develop a distributed optic fiber sensing and measuring system using the rayleigh backscattering. To define the functions, we have constructed a testing system(1.1[km]), done the characteristics test.

  • PDF

Fatigue characteristics of distributed sensing cables under low cycle elongation

  • Zhang, Dan;Wang, Jiacheng;li, Bo;Shi, Bin
    • Smart Structures and Systems
    • /
    • v.18 no.6
    • /
    • pp.1203-1215
    • /
    • 2016
  • When strain sensing cables are under long-term stress and cyclic loading, creep may occur in the jacket material and each layer of the cable structure may slide relative to other layers, causing fatigue in the cables. This study proposes a device for testing the fatigue characteristics of three types of cables operating under different conditions to establish a decay model for observing the patterns of strain decay. The fatigue characteristics of cables encased in polyurethane (PU), GFRP-reinforced, and wire rope-reinforced jackets were compared. The findings are outlined as follows. The cable strain decayed exponentially, and the decay process involved quick decay, slow decay, and stabilization stages. Moreover, the strain decay increased with the initial strain and tensile frequency. The shorter the unstrained period was, the more similar the initial strain levels of the strain decay curves were to the stabilized strain levels of the first cyclic elongation. As the unstrained period increased, the initial strain levels of the strain decay curves approached those of the first cyclic elongation. The tested sensing cables differed in the amount and rate of strain decay. The wire rope-reinforced cable exhibited the smallest amount and rate of decay, whereas the GFRP-reinforced cable demonstrated the largest.

New theorical modeling for diagnosis of power cable using optic fiber (광화이버를 이용한 전력케이블 진단을 위한 새로운 이론적 모델링)

  • Kim, Tae-Sun;Seo, Chul-Hun
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1837-1839
    • /
    • 1998
  • This paper proposes the strain-insensitive temperature sensing in quasi-distributed sensor system using different thermal expension coefficient materials. This system has the high sensitivity and hasn't the necessity of reference signal. We can monitor the condition of the power cable with this system.

  • PDF

Conceptual Design for Underground Hydrogen Pipeline Monitoring System: Case Study on Fiber Optic Sensing (지하매설 수소 배관망 안전 모니터링 시스템의 개념 설계: 광섬유 기반 모니터링 사례를 중심으로)

  • Park, Jae-Woo;Yeom, Dong-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_2
    • /
    • pp.673-686
    • /
    • 2022
  • Recently, as the importance of eco-friendly energy has increased hydrogen gas is in the spotlight as future energy. Due to its special properties, hydrogen gas is more difficult to detect requiring more precise sensing technology. The primary objective of this study is to design a concept of an underground hydrogen pipeline monitoring system. For this, the following research works are conducted sequentially; 1)selection of core technology for conceptual design, 2)state-of-the-art review, 3)design of a concept of the system. As a result, DAS(Distributed Acoustic Sensing), and DTS(Distributed Temperature Sensing) are selected as each core technology. Furthermore, a conceptual design of an underground hydrogen pipeline monitoring system is deducted. It is expected that the impact on the eco-friendly energy industry will be enormous due to the increasing interest in using hydrogen energy.