Multimedia services in the cloud have become a popular trend in the big data environment. However, how to efficiently schedule a large number of multimedia services in the cloud is still an open and challengeable problem. Current cloud-based scheduling algorithms exist the following problems: 1) the content of the multimedia is ignored, and 2) the cloud platform is a known parameter, which makes current solutions are difficult to utilize practically. To resolve the above issues completely, in this work, we propose a novel distributed multimedia scheduling to satisfy the objectives: 1) Develop a general cloud-based multimedia scheduling model which is able to apply to different multimedia applications and service platforms; 2) Design a distributed scheduling algorithm in which each user makes a decision based on its local information without knowing the others' information; 3) The computational complexity of the proposed scheduling algorithm is low and it is asymptotically optimal in any case. Numerous simulations have demonstrated that the proposed scheduling can work well in all the cloud service environments.
Cloud computing technology based on centralized high-performance computing has brought about major changes across the information technology industry and led to new paradigms. However, with the rapid development of the industry and increasing need for mass generation and real-time processing of data across various fields, centralized cloud computing is lagging behind the demand. This is particularly critical in emerging technologies such as autonomous driving, the metaverse, and augmented/virtual reality that require the provision of services with ultralow latency for real-time performance. To address existing limitations, distributed and edge cloud computing technologies have recently gained attention. These technologies allow for data to be processed and analyzed closer to their point of generation, substantially reducing the response times and optimizing the network bandwidth usage. We describe distributed and edge cloud computing technologies and explore the latest trends in their standardization.
Journal of the Korean Data and Information Science Society
/
v.23
no.6
/
pp.1259-1269
/
2012
Cloud computing has rapidly become a new infrastructure for organizations to reduce their capital cost in IT investment and to develop planetary-scale distributed applications. One of the fundamental challenges in geographically distributed clouds is to provide efficient algorithms for supporting inter-cloud data management and dissemination. In this paper, we propose a geographic group quorum system (GGQS)-based hybrid algorithm for improving the interoperability of inter-cloud in time-critical event dissemination service, such as computing policy updating, message sharing, event notification and so forth. The proposed algorithm first organizes these distributed clouds into a geographic group quorum overlay to support a constant event dissemination latency. Then it uses a hybrid protocol that combines geographic group-based broad-cast with quorum-based multicast. Our numerical results show that the GGQS-based hybrid algorithm improves the efficiency as compared with Chord-based, Plume an GQS-based algorithms.
International Journal of Internet, Broadcasting and Communication
/
v.16
no.2
/
pp.119-126
/
2024
The volume of genomic data is constantly increasing in various modern industries and research fields. This growth presents new challenges and opportunities in terms of the quantity and diversity of genetic data. In this paper, we propose a distributed cloud system for integrating and managing large-scale gene databases. By introducing a distributed data storage and processing system based on the Hadoop Distributed File System (HDFS), various formats and sizes of genomic data can be efficiently integrated. Furthermore, by leveraging Spark on YARN, efficient management of distributed cloud computing tasks and optimal resource allocation are achieved. This establishes a foundation for the rapid processing and analysis of large-scale genomic data. Additionally, by utilizing BigQuery ML, machine learning models are developed to support genetic search and prediction, enabling researchers to more effectively utilize data. It is expected that this will contribute to driving innovative advancements in genetic research and applications.
International Journal of Advanced Culture Technology
/
v.9
no.3
/
pp.321-326
/
2021
In a multi-cloud environment, it is necessary to minimize physical movement for efficient interoperability of distributed source data without building a data warehouse or data lake. And there is a need for a data platform that can easily access data anywhere in a multi-cloud environment. In this paper, we propose a new platform based on data fabric centered on a distributed platform suitable for cloud environments that overcomes the limitations of legacy systems. This platform applies the knowledge graph database technique to the physical linkage of source data for interoperability of distributed data. And by integrating all data into one scalable platform in a multi-cloud environment, it uses the holochain technique so that companies can easily access and move data with security and authority guaranteed regardless of where the data is stored. The knowledge graph database mitigates the problem of heterogeneous conflicts of data interoperability in a decentralized environment, and Holochain accelerates the memory and security processing process on traditional blockchains. In this way, data access and sharing of more distributed data interoperability becomes flexible, and metadata matching flexibility is effectively handled.
최근 멀티코어 시스템은 컴퓨터의 성능을 향상시키기 위해 더 많은 수의 코어를 연결시키는 다중코어 시스템으로 발전하고 있다. 그러나 멀티코어 시스템은 사용하는 코어의 아키텍처 구조와 개수에 따라 성능 차이가 발생한다. 이에, 본 논문에서는 코어의 아키텍처 구조와 코어의 개수가 성능에 미치는 영향을 분석하기 위해 Tilera의 다중코어 시스템인 Tile-Gx36, TilePro64와 Intel의 x86-64 멀티코어 시스템인 Core i5의 성능을 비교하였다. 코어의 사용률이 늘어남에 따른 성능차이를 알아보기 위해 벤치마크 프로그램인 SPEC CPU 2006을 이용하여 각 시스템 내 단일코어의 성능을 측정하고, OpenMP 벤치마크 프로그램을 이용하여 시스템의 모든 코어를 사용했을 때의 입력 데이터 크기에 따른 성능을 측정하였다. 실험 결과, 단일코어에서의 성능은 정수형 데이터를 사용하여 측정하였을 경우 Core i5가 Tile-Gx36보다 약 87%, 실수형 데이터를 사용하여 측정하였을 경우 약 94% 더 빠른 것으로 나타났다. 그러나 코어 전체를 이용한 성능 결과에서는 정수형 배열 크기가 이상일 경우 Tile-Gx36 시스템의 처리 속도가 Core i5 시스템 보다 평균적으로 약 7.6배 향상됨을 확인할 수 있었다. 따라서 Tilera의 다중코어 시스템은 클럭 속도와 아키텍처 구조의 영향으로 단일코어의 성능은 떨어지나, 병렬 처리를 이용한 고속연산에서는 성능이 향상된다고 할 수 있다.
Journal of the Korea Society of Computer and Information
/
v.22
no.8
/
pp.55-61
/
2017
Cloud computing is cost-effective in terms of system configuration and maintenance and does not require special IT skills for management. Also, cloud computing provides an access control setting where SSO is adopted to secure user convenience and availability. As the SSO user authentication structure of cloud computing is exposed to quite a few external security threats in wire/wireless network integrated service environment, researchers explore technologies drawing on distributed SSO agents. Yet, although the cloud computing access control using the distributed SSO agents enhances security, it impacts on the availability of services. That is, if any single agent responsible for providing the authentication information fails to offer normal services, the cloud computing services become unavailable. To rectify the environment compromising the availability of cloud computing services, and to protect resources, the current paper proposes a security policy that controls the authority to access the resources for cloud computing services by applying the authentication policy of user authentication agents. The proposed system with its policy of the authority to access the resources ensures seamless and secure cloud computing services for users.
Recently, interest in cloud computing which provides IT resources as service form in IT field is increasing. As a result, much research has been done on the distributed data processing that store and manage a large amount of data in many servers. Meanwhile, in order to effectively utilize the spatial data which is rapidly increasing day by day with the growth of GIS technology, distributed processing of spatial data using cloud computing is essential. Therefore, in this paper, we review the representative distributed data processing techniques and we analyze the optimization requirements for performance improvement of the distributed processing techniques for a large amount of data. In addition, we uses the Hadoop and we evaluate the performance of the distributed data processing techniques for their optimization requirements.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.13
no.3
/
pp.1141-1163
/
2019
In an effort to minimize operational expenses and supply users with more scalable services, distributed applications are actually going towards the Cloud. These applications, sent out over multiple environments and machines, are composed by inter-connecting independently developed services and components. The implementation of such programs on the Cloud is difficult and generally carried out either by hand or perhaps by composing personalized scripts. This is extremely error prone plus it has been found that misconfiguration may be the root of huge mistakes. We introduce AutoBot, a flexible platform for modeling, installing and (re)configuring complex distributed cloud-based applications which evolve dynamically in time. AutoBot includes three modules: A simple and new model describing the configuration properties and interdependencies of components; a dynamic protocol for the deployment and configuration ensuring appropriate resolution of these interdependencies; a runtime system that guarantee the proper configuration of the program on many virtual machines and, if necessary, the reconfiguration of the deployed system. This reduces the manual application deployment process that is monotonous and prone to errors. Some validation experiments were conducted on AutoBot in order to ensure that the proposed system works as expected. We also discuss the opportunity of reusing the platform in the transition of applications from Cloud to Fog computing.
Journal of the Korean Data and Information Science Society
/
v.22
no.5
/
pp.989-998
/
2011
Cloud computing provides computation, software, data access, and storage services that do not require end-user knowledge of the physical location and configuration of the system that delivers the services. Cloud computing providers have setup several data centers at different geographical locations over the Internet in order to optimally serve needs of their customers around the world. One of the fundamental challenges in geographically distributed clouds is to provide efficient algorithms for supporting inter-cloud data management and dissemination. In this paper, we propose a group quorum system (GQS)-based dissemination for improving the interoperability of inter-cloud in time-critical event dissemination service, such as computing policy updating, message sharing, event notification and so forth. The proposed GQS-based method organizes these distributed clouds into a group quorum ring overlay to support a constant event dissemination latency. Our numerical results show that the GQS-based method improves the efficiency as compared with Chord-based and Plume methods.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.