
International Journal of Internet, Broadcasting and Communication Vol.16 No.2 119-126 (2024)

http://dx.doi.org/10.7236/IJIBC.2024.16.2.119

Copyright© 2024 by The Institute of Internet, Broadcasting and Communication. This is an Open Access article distributed under the terms

of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0)

Design of Distributed Cloud System for Managing large-scale Genomic Data

Seine Jang*, Seok-Jae Moon**

* The master’s course, Graduate School of Smart Convergence, Kwangwoon University, Seoul,

Korea

** Professor, Graduate School of Smart Convergence, Kwangwoon University, Seoul, Korea

E-mail : {seine1025, msj8086}@kw.ac.kr

Abstract

The volume of genomic data is constantly increasing in various modern industries and research fields. This

growth presents new challenges and opportunities in terms of the quantity and diversity of genetic data. In this

paper, we propose a distributed cloud system for integrating and managing large-scale gene databases. By

introducing a distributed data storage and processing system based on the Hadoop Distributed File System

(HDFS), various formats and sizes of genomic data can be efficiently integrated. Furthermore, by leveraging

Spark on YARN, efficient management of distributed cloud computing tasks and optimal resource allocation

are achieved. This establishes a foundation for the rapid processing and analysis of large-scale genomic data.

Additionally, by utilizing BigQuery ML, machine learning models are developed to support genetic search and

prediction, enabling researchers to more effectively utilize data. It is expected that this will contribute to

driving innovative advancements in genetic research and applications.

Keywords: HDFS, Spark on YARN, Big data, Distributed Cloud System, BigQuery ML

1. INTRODUCTION

The scale of data generated in diverse industries and research domains has consistently exceeded petabyte

levels and continues to grow. Notably, with the global execution of large-scale human genomic analysis

projects and the evolution of gene sequencing technologies, the volume of genomic data is witnessing

continuous expansion. Consequently, there is ongoing research aimed at effectively integrating and analyzing

this large-scale genomic data. To effectively integrate and manage rapidly generated big data in various

formats, high-cost hardware and software are required [1]. Distributed cloud computing, capable of processing

the demands of data analysis in real-time, emerges as the most suitable technology for this purpose. In 2017,

the DNA Data Bank of Japan (DDBJ) Center started a cloud service called DDBJ Group Cloud (DGC) utilizing

the NIG supercomputer [2]. In addition, in 2021, the UK Biobank has been striving to enhance global

accessibility by introducing a cloud-based research analysis platform for researchers [3]. However, existing

gene integration systems are typically built on relational database platforms, analyzing and processing data

using structured normalized queries or non-structured queries. Furthermore, they execute machine learning

through high-level programming languages like Python. Google Cloud Platform’s BigQuery ML is a cloud-

based machine learning service that enables the construction and deployment of machine learning models using

SQL queries [4]. BigQuery ML offers the advantage of creating operational-level machine learning models

IJIBC 24-2-15

Manuscript Received: March. 28, 2024 / Revised: April. 6, 2024 / Accepted: April. 12, 2024

Corresponding Author: msj8086@kw.ac.kr

Tel: 02-940-8283, Fax: 02-940-5443

Author’s affiliation: Professor, Graduate School of Smart Convergence, Kwangwoon University, Seoul, Korea

120 International Journal of Internet, Broadcasting and Communication Vol.16 No.2 119-126 (2024)

with minimal coding using SQL tools and techniques, without requiring knowledge of statistics, algorithms,

data preprocessing, or high-level programming languages.

 This paper proposes a distributed cloud system for the management of large-scale genomic data. The

proposed system is built upon HDFS, effectively integrating various gene databases for storing and managing

data [5]. It ensures data interoperability in a secure environment with data integrity. Additionally, the

combination of Spark on YARN manages optimal resource allocation for distributed cloud tasks and constructs

modules capable of processing large-scale genomic data sets rapidly [6]. Furthermore, in this proposed system,

for genomic data analysis, SQL’s INNER JOIN combines the user input data with the tables from the gene

databases to create new result tables. These newly generated result tables for each database are then utilized

by BigQuery ML to not only perform gene search but also to create machine learning models, enabling analysis

and training functionalities within the system.

The structure of this paper is as follows: Chapter 2 describes the components, operational structure, and

algorithms of the proposed system. Chapter 3 provides a comparative analysis between the existing system

and the proposed system. Finally, Chapter 4 concludes the paper.

2. PROPOSED SYSTEM

2.1 System Components

The proposed system in this paper enables the integration and interoperability of distributed databases.

Additionally, it provides modules for the creation and analysis of machine learning models for gene search

and prediction using BigQuery ML. Fig 1 overviews the proposed system, comprising primarily of Hadoop's

HDFS, YARN, Apache Spark, and BigQuery ML.

The main roles of the system components are as follows:

◼ BigQuery ML: A cloud-based machine learning service provided by Google Cloud Platform. It allows

for data preprocessing, machine learning model creation, and training using simple SQL syntax,

without requiring knowledge of complex tools or high-level programming languages. Utilizing the

familiar SQL query syntax, BigQuery ML combines tables from various databases using INNER JOIN

to generate new result tables for machine learning analysis.

◼ Spark: Apache Spark provides fast processing and flexibility by employing immutable data structures

for parallel and distributed processing of big data.

◼ YARN: YARN manages resource allocation and job scheduling in Hadoop clusters, providing an

optimal environment for large-scale data processing.

◼ HDFS: HDFS ensures data reliability and availability by distributing storage across multiple nodes. Its

scalability allows for storing various types and sizes of data effectively.

◼ Raw Data DB: A database archiving human genomic datasets submitted by researchers worldwide

across various fields. These databases are distributed across multiple countries and research institutes.

Design of Distributed Cloud System for Managing large-scale Genomic Data 121

Figure 1. Architecture overview of the proposed system

As presented in Fig 2, the user inputs the genomic data table they want to analyze. Upon receiving the input

from user, Spark accesses the raw databases managed in HDFS. SQL queries are executed to parse the data

tables stored in each database and the input data table from the user. Using INNER JOIN, Spark combines

tables containing data that matches the specified range provided by user to create a new table. Subsequently,

the new result table is passed to the BigQuery ML execution module. At this stage, the user writes SQL queries

to create machine learning models. BigQuery ML module then executes machine learning based on the

received result tables to perform gene search and prediction. The resulting new data table is then returned to

user.

Figure 2. Interaction among user, distributed cloud system and BigQuery ML

2.2. BigQuery ML

Short Tandem Repeats (STRs) are repetitive DNA sequences occurring at specific loci within the human

DNA, characterized by varying numbers of repeat units among individuals [7]. Fig 3 shows the anticipated

122 International Journal of Internet, Broadcasting and Communication Vol.16 No.2 119-126 (2024)

structure of the data tables based on a sample composed of D8S1179, D21S11, D7S820, CSF1PO, D3S1358,

among over a million STR sequences, stored in each respective database.

Figure 3. Structure of the data tables stored in each raw data DB

The following Table 1 shows the algorithm for extracting data tables to execute BigQuery ML using SQL

queries. The algorithm allows user to specify a tolerance range for the values of the input genomic data. This

range is utilized to extract data tables similar to the input data, enabling user to specify and combine tables

based on their genomic data values. The `input_data` represents the genomic data table input by user,

consisting of the locus of each gene and the corresponding two allele values observed at that locus. By defining

the `input_data` table in this manner and performing an INNER JOIN with another table stored in the database

(`other_data`), a new table (`joined_data`) is created. The condition for the INNER JOIN is that the LOCUS

value in ̀ input_data` matches the LOCUS value in `other_table`, and the two Value values fall within a certain

range. The resulting ̀ joined_data` table, generated by joining rows meeting these conditions, is then extracted.

Following the process outlined in Table 1, BigQuery ML is executed based on the data tables combined for

each database.

Table 1. SQL query algorithm

Algorithm 1: SQL query algorithm

Input: input_data

WITH input_data AS (

 SELECT ‘D8S1179’ AS LOCUS, ‘9, 14’ AS Value

 UNION ALL SELECT ‘D21S11’, ‘28, 29’

 UNION ALL SELECT ‘D7S820’, ‘8, 9’

 UNION ALL SELECT ‘CSF1PO’, ‘10, 12’

 UNION ALL SELECT ‘D3S1358’, ’15, 18’

),

joined_data AS (

 SELECT input_data.*, other_data.*

 FROM input_data

 INNER JOIN other_table AS other_data

 ON input_data.LOCUS = other_data.LOCUS

 AND (

 ABS(SPLIT(input_data.Value, ‘,’)[OFFSET(1)]-other_data.Value) <= 1

 OR ABS(SPLIT(input_data.Value, ‘,’)[OFFSET(2)-other_data.Value] < =1

)

)

SELECT * FROM joined_data;

Design of Distributed Cloud System for Managing large-scale Genomic Data 123

Table 2 shows the algorithm for creating, evaluating, and performing predictions on the data using BigQuery

ML to predict the race of the `input_data`. The logistic regression model is created using the CREATE

MODEL statement. The necessary input variables for model training are retrieved from `joined_data`, and the

labels to be predicted are fetched from `input_data`. These values are combined based on the LOCUS value

using INNER JOIN. The performance of the generated model is evaluated using the ML.EVALUATE function,

which includes performance metrics such as accuracy, precision, and recall in the evaluation results.

Subsequently, the ML.PREDICT function is employed to predict the race of the corresponding gene

(`input_data`) and return the associated probability values. The choice of machine learning algorithm may vary

depending on the nature of the actual data, and considering more features is essential for improving the

performance of the model.

Table 2. BigQuery ML algorithm

Algorithm 2: BigQuery ML algorithm

--CREATE ML MODEL

CREATE MODEL ‘your_project.your_datset.race_prediction_model’

OPTION (model_type=;logistic_reg’) AS

SELECT

 other_data.*;

 input_data.race AS label

FROM

 Joined_data AS other_data

INNER JOIN

 input_data

ON

 Other_data.LOCUS = input_data.LOCUS;

--EVALUATE ML MODEL

SELECT

 *

FROM

 ML.EVALUATE(MODEL ‘your_project.your_dataset.race_prediction_model’);

--PREDICT THE RESULT

SELECT

 predicted_label,

 predicted_probabilities

FROM

 ML.PREDICT(MODEL ‘your_project.your_dataset.race_prediction_model’,

 (

 SELECT

 *

 FROM

 Input_data

)

);

124 International Journal of Internet, Broadcasting and Communication Vol.16 No.2 119-126 (2024)

2.3 Operational Procedure

This chapter describes the sequential process of the proposed system.

Figure 5. Sequence diagram of the proposed system

As presented in Fig. 5, when user inputs a data table, Spark initiates YARN for distributed cloud computing.

The YARN resource manager allocates and manages cluster resources to maintain an optimal environment

throughout the system's operation. Additionally, Spark accesses databases managed in HDFS, loading data and

performing distributed processing. During this process, SQL queries execute syntactical analysis of the data

tables input by user and each database, utilizing INNER JOIN.

Next, Spark operates the BigQuery ML module and executes SQL queries to process the combined tables.

The user writes BigQuery ML SQL syntax to create a machine learning model. Based on the syntax provided

by user, BigQuery ML analyzes the data tables and performs predictions. The final result, a newly generated

data table from the machine learning process, is then transmitted to user. If no further distributed cloud

computing is required, Spark terminates YARN.

3. COMPARSION OF SYSTEMS

Table 3 summarizes the comparison results of software used for research, including DNA analysis in fields

such as forensics and biology, namely DNAxs, Galaxy, and Geneious [8-10]. In this paper, comparisons were

made regarding server scalability, whether machine learning support is provided, along with the programming

language used by each supported software and the engine for database search.

Design of Distributed Cloud System for Managing large-scale Genomic Data 125

Table 3. Comparison of systems

 DNAxs [8] Galaxy [9] Geneious Prime [10] Proposed System

Server
Scalability

Runs on both locally
and on a Windows or

Linux server that
support Java 17 or

higher,
The statistical library
in DNAxs supports
parallel computing

Easily expand a
Galaxy server

available compute
capacity by sending
user jobs to cloud

resources

Runs on the user’s
local computer and

offers a cloud-based
data storage option

Supports distributed
cloud computing

based on Hadoop

Machine
Learning

Using ‘NOC’ tools
Using a toolkit

‘Galaxy-ML’
Unavailable Using ‘BigQuery ML’

Language
Support
for ML

Python, Java Python Unavailable SQL

Database
Search
Engine

Using ‘SmartRank’ Using ‘Galaxy GUI’ Using ‘BLAST’
Using ‘Apache

Spark’

The first involves the server scalability. DNAxs can run on the user's local computer and on

 servers supporting Java 17 or higher on Windows and Linux. However, it does not support cl

oud-based data storage, and its integrated 'DNAStatistX' module supports parallel computing. Gal

axy, through 'GalaxyCloudRunner,' facilitates easy scalability of Galaxy servers by transferring u

ser tasks to cloud resources, with resources dynamically allocated from AWS, Azure, GCP, or

OpenStack in an automated manner. Geneious Prime offers a cloud-based data storage option ca

lled 'Geneious Cloud' and executes data analysis on the user's local computer. However, it does

not support data sharing, and once data is deleted from the cloud, it is permanently removed w

ithout the option for recovery. Additionally, automatic backup with the user's local database is n

ot supported. On the other hand, the proposed system provides a Hadoop-based distributed clou

d environment, enabling database sharing across all operating system environments. HDFS distri

butes data across multiple nodes for replication, thus preventing data loss and facilitating easy r

ecovery. From the machine learning perspective, Galaxy utilizes the ‘Galaxy-ML’ toolkit to crea

te a complete machine learning pipeline, including normalization, feature selection, model definit

ion, hyperparameter optimization, and cross-fold validation through a web-based user interface.

Galaxy-ML is accessible only through web browsers and is capable of handling large datasets. I

t is written in Python, allowing users to utilize the Galaxy-ML API with Python. Additionally,

DNAxs includes an estimation NOC tool based on machine learning approaches, automatically p

roviding an estimation NOC. However, Geneious Prime does not support machine learning. Reg

arding database search capabilities, DNAxs can perform DNA database searches using ‘SmartRa

nk’ internally, allowing for more complex mixed DNA profile searches. Galaxy, through its web

-based graphical user interface (Galaxy GUI), enables searches in public databases. Additionally,

Geneious Prime can perform seven types of searches on databases stored in NCBI or local data

bases using ‘BLAST (Basic Local Alignment Search Tool)’. The proposed system can conduct

SQL searches by accessing integrated raw databases in HDFS via Apache Spark.

126 International Journal of Internet, Broadcasting and Communication Vol.16 No.2 119-126 (2024)

4. CONCLISION

In this paper, a distributed cloud system effectively combining existing technologies is proposed for the

management and analysis of large-scale genetic data. Through the integration of Hadoop HDFS, YARN, Spark,

and BigQuery ML, the process from data processing to machine learning model generation is streamlined and

optimized. This system efficiently integrates large-scale databases, providing users with cost-effective

computing resources and eliminating the maintenance requirements of centralized systems. Moreover, users

can benefit from performing data processing, machine learning model creation, evaluation, and prediction

using only SQL, without the need for expertise in advanced programming languages like Python or Java. This

marks a pivotal turning point towards innovative advancements in the field of genetic data analysis.

Additionally, we expect to open up new possibilities for efficient data management and analysis in research

and application domains by proposed system.

ACKNOWLEDGMENT

※ This paper was supported by the KwangWoon University Research Grant of 2024.

References

[1] “Big Data Analysis using BigQuery on Cloud Computing Platform,” Australian Journal of Engineering and

Innovative Technology. Universe Publishing Group - UniversePG, pp. 1–9, Jan. 27, 2021,

DOI: https://doi.org/10.34104/ajeit.021.0109.

[2] https://www.ddbj.nig.ac.jp/services/ddbj-group-cloud-e.html

[3] N. E. Allen et al., “Prospective study design and data analysis in UK Biobank,” Science Translational Medicine,

vol. 16, no. 729. American Association for the Advancement of Science (AAAS), Jan. 10, 2024,

DOI: https://doi.org/10.1126/scitranslmed.adf4428.

[4] https://cloud.google.com/bigquery/docs/bqml-introduction

[5] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop Distributed File System,” 2010 IEEE 26th

Symposium on Mass Storage Systems and Technologies (MSST). IEEE, May 2010,

DOI: https://doi.org/10.1109/msst.2010.5496972.

[6] H. Zhang, H. Huang, and L. Wang, “Meteor: Optimizing spark-on-yarn for short applications,” Future Generation

Computer Systems, vol. 101. Elsevier BV, pp. 262–271, Dec. 2019,

DOI: https://doi.org/10.1016/j.future.2019.05.077.

[7] P. N. Lopez Gonzalez, J. E. Bautista-Gonzalez, M. J. Lopez-Gonzalez, J. E. Sosa-Escalante, and L. Gonzalez-

Herrera, “The most frequent autosomal STRs involved in exclusion of paternity cases in a population from

southeast, Mexico,” Forensic Science International: Genetics Supplement Series, vol. 7, no. 1. Elsevier BV, pp.

465–467, Dec. 2019,

DOI: https://doi.org/10.1016/j.fsigss.2019.10.053.

[8] https://www.forensicinstitute.nl/products-and-services/forensic-products/dnaxs

[9] N. Goonasekera, A. Mahmoud, J. Chilton, and E. Afgan, “GalaxyCloudRunner: enhancing scalable computing for

Galaxy,” Bioinformatics, vol. 37, no. 12. Oxford University Press (OUP), pp. 1763–1765, Oct. 26, 2020,

DOI: https://doi.org/10.1093/bioinformatics/btaa860.

[10] https://www.geneious.com/features/cloud/

