• Title/Summary/Keyword: distributed circuit analysis

Search Result 91, Processing Time 0.022 seconds

A Study on Fault Current Calculation of ±750[V] DC Distribution Grid (±750[V] 직류배전망의 고장전류 산정에 관한 연구)

  • Lee, Kyung-Min;Park, Chul-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1286-1291
    • /
    • 2018
  • In recent years, the proliferation of DER (distributed energy resources) is progressing rapidly. In particular, research on LVDC distribution grid with various advantages has begun. In order to commercialize this LVDC grid, direct current protection method should be established by analysis of DC faults. Recently, the development of HSCB (high-speed circuit breaker) for new ${\pm}750[V]$ LVDC grid has been researched. This paper deals with the calculation of the maximum short-circuit fault current of the HSCB as a part of the development of HSCB for the LVDC distribution grid. First, modeling using PSCAD was carried out for PV array with BESS on the Gochang Power Test Center system. Next, to calculate the rated capacity of HSCB, fault currents were calculated and the characteristics were analyzed through fault simulations. Thus, this study results can help to establish short-circuit capacity calculation of HSCB and protection plan for DC protection relay system.

An Analysis of Teachers and Students' Difficulties in the Classes on 'Electric Circuit' Unit of Elementary School Science Curriculum (초등학교 과학과 '전기회로' 단원 수업에서 겪는 교사와 학생의 어려움 분석)

  • Lim, Ahreum;Jhun, Youngseok
    • Journal of Korean Elementary Science Education
    • /
    • v.33 no.3
    • /
    • pp.597-606
    • /
    • 2014
  • The purpose of this study is to survey and analyze difficulties in teaching and learning elementary school science on the chapter titled 'electric circuit'. 28 elementary school teachers who teach 5th grade science and 73 5th grade students in elementary school were taken part in this survey. The pilot questionnaire was distributed to find out both the degree and the reason of difficulties in teaching and learning. The answers are analyzed with four areas to extract elements which make class difficult; Learner factors (L), Instruction factors (I), Curriculum & textbooks factors (C), and Environment factors (E). The results are as follows. (1) It can be seen that both students and teachers feel the highest difficulty in 7th lesson 'the direction of current', while they felt little difficulty in lesson 3 'conductor and nonconductor' and lesson 8 'the safety of electricity'. (2) The most mentioned reason of difficulties in teaching and learning was Learner factors (L). (3) Teachers felt many difficulties in experimental environment. On the other hands, students didn't think experimental failures as serious trouble. (4) Students felt many difficulties in new terms and hazy concepts or expressions. (5) Teachers felt a lot of difficulties in those from Curriculum & textbooks factors.

Analysis on Bus Voltage Sag in Power Distribution System with SFCL according to Interconnected Locations of Small DG (초전도 한류기 적용시 소형 분산전원시스템의 연계 위치에 따른 배전계통의 전압강하 분석)

  • Moon, Jong-Fil;Shon, Jin-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.62 no.4
    • /
    • pp.210-215
    • /
    • 2013
  • This paper analyze the bus voltage sags in the power distribution system with a small scale cogeneration system when the superconducting fault current limiter was introduced. Among the solutions to decrease the short-circuit current considering the locations of the small scale cogeneration system, the superconducting fault current limiter (SFCL) has been announced as one of the promising methods to reduce the fault current because the installation of the small scale cogeneration system which increases the short-circuit current. According to the application locations of the small scale cogeneration system in a power distribution system, it has caused the variations of voltage sag and duration which depends on the change of the short-circuit current, which can make the operation of the protective device deviate from its original set value when the fault occurs. To investigate the voltage sag when a SFCL was applied into a power distribution system where the small scale cogeneration system was introduced into various locations, the SFCL, small scale cogeneration system, and power system are modeled using PSCAD/EMTDC. In this paper, the effects on voltage sags are assessed when the SFCL is installed in power distribution system with various locations of the small scale cogeneration system.

Analysis of the Operating Point and Fault Current Contribution of a PEMFC as Distributed Generation (DG)

  • Moon, Dae-Seong;Kang, Gi-Hyeok;Chung, Il-Yop;Won, Dong-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.3
    • /
    • pp.382-388
    • /
    • 2009
  • Recently, hydrogen energy has been anticipated to change the paradigm of conventional power systems because it can expand sustainable energy utilization and conceptually provide remarkable flexibility to power system operation. Since hydrogen energy can be converted to electric energy through fuel cells, fuel cells are expected to play an important role in the future hydrogen economy. In this paper, a Proton Exchange Membrane Fuel Cell (PEMFC) is modeled as an equivalent circuit and its steady-state characteristics investigated using the model. PEMFCs can be connected to power systems through power conditioning systems, which consist of power electronic circuits, and which are operated as distributed generators. This paper analyzes the effects of the characteristics of the PEMFC internal voltages and investigated the dynamic responses of the PEMFC under fault conditions. The results show that the fault current contribution of the PEMFC is different from those of conventional generators and is closely related to its operating point.

A Study on the Electric Circuit Model for the Direct FM Characteristics of DFB Semiconductor Lasers (DFB 반도체 레이저의 직접 주파수변조(DFM) 특성의 전기적 회로모델에 관한 연구)

  • 정순구;전광석;홍완희
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.12
    • /
    • pp.2426-2438
    • /
    • 1994
  • In this paper we present for the first time the electric circuit model for direct frequrncy modulation(FM) response of the conventional distributed-feedback(DFB) semiconductor laser diodes. Especially, in this paper, the proposed model includes not only the carrier density modulation effect, but also the temperature modulation effect determining the DFM characteristics of DFB characteristics of DFB semiconductor lasers. The DFM response due to injection current modulation was obtained as a function of modulation frequency from DC to a few GHz. The circuit model representing the temperature modulation effect is obtained from the structure of DFB LD chip and the simulation results are compared with the published experimental results. The circuit model representing the temperature modulation effect is obtained from the structure of DFB LD chip and the simulation results are compared with the published experimental results. The circuit model representing carrier density modulation effect is obtained from the rate equations of DFB lasers and the simulation results are compared with the results that were obtained by the conventional numerical analysis approach. The results showed good agreements.

  • PDF

Performance Analysis of Virtual Circuit Services Using Open Queuing Network Models (오픈 큐잉 네트워크 모델을 이용한 가상회선 서비스 성능 분석)

  • 조용구;오영환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.3
    • /
    • pp.225-231
    • /
    • 1992
  • In this paper, queuing networks with open chains are considerd to analyze the performance of packet switching networks. Networks are classified into backbone and local access networks. Networks for performance analysis are distributed to twelve regions and DNS is the backbone. Analysis was conducted using the real values from the input to existing networks and mathematical estimation values. As the result of analysis, the mean of end-to-and delay for each chain was presented. Except special regions, we found that there was a little difference between real values and mathematical estimation values. However, there could be a performance problem in total networks due to the increase of communication volumes in each region. So we proposed some solutions to this problem.

  • PDF

Design and Implementation of HomePNA 2.0 MAC Controller Circuit (HomePNA 2.0 MAC Controller 회로의 설계 및 구현)

  • Kim, Jong-Won;Kim, Dae-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.1A
    • /
    • pp.1-10
    • /
    • 2006
  • The Home Phoneline Networking Alliance(HomePNA) 2.0 technology can establish a home network using existing in-home phone lines, which provides a channel rate of 4-32 Mbps. HomePNA 2.0 Medium Access Control(MAC) protocol adopts an IEEE 802.3 Carrier Sense Multiple Access with Collision Detection(CSMA/CD) access method, Quality of Service(QoS) algorithm, and Distributed Fair Priority Queuing(DFPQ) collision resolution algorithm. In this paper, we describe some performance analysis results of HomePNA 2.0 MAC protocol and the requirements of HomePNA 2.0 MAC controller. Then, we propose the architecture of HomePNA 2.0 MAC controller circuit, show the simulation result of each block included in HomePNA 2.0 MAC controller, and present the HomePNA 2.0 transceiver chip that we have implemented.

Analysis of Electro-magnetic Wave radiating from an Ignition Plug and High-voltage Cable inside an Engine Room (자동차의 점화 플러그와 고압 케이블에서 발생하는 전자파에 대한 해석)

  • 최광제;조시기;정원락;장성국;강신한
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.209-215
    • /
    • 2004
  • This paper presents the frequency range and an analysis method to find the dominant source of electro-magnetic wave which originates from a spark ignition in engine room. Applying the distributed constant equivalent circuit theory the radiation of probable electro-magnetic wave around an ignition plug and a high voltage cable is studied analytically. Experimental studies are also conducted by measuring the frequency spectrum to obtain the radiating characteristics of electro-magnetic wave. Results from both analytical and experimental studies confirm that an ignition plug and a high voltage cable are dominant sources of electro-magnetic wave and that the radiating frequency is ranged from 1.3[GHz] to 2[GHz] band.

Harmonic Generation and System Response Characteristics in Electrified Railway(II) - Focused on Measurement and Analysis - (전기철도에서의 고조파 발생과 계통응답특성(II) - 고조파 측정분석을 중심으로 -)

  • 오광해;이한민
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.1
    • /
    • pp.65-69
    • /
    • 2004
  • In reference to this study, Part Ⅰ showed how the system respond to the harmonics originated from electric locomotives. That is, the system response to the harmonics was derived by computational algorithm with numerical formulas in theoretical aspects. However, Real catenary system has complex configuration of conductors and it is an important point that if we can consider the circuit element of catenary conductors as an uniformly distributed RLC element. Moreover, harmonic characteristics in electric locomotive depend on its operational modes. From these point of view, measurements of harmonics are performed for real railway power supply systems under the various operational modes, and spectrum and distortion analyses in measurement data are described.

A Design of High Efficiency Distributed Amplifier Using Optimum Transmission Line (최적 전송 선로를 이용한 고효율 분산형 증폭기의 설계)

  • Choi, Heung-Jae;Ryu, Nam-Sik;Jeong, Young-Chae;Kim, Chul-Dong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.1
    • /
    • pp.15-22
    • /
    • 2008
  • In this paper, we propose a numerical analysis on reversed current of distributed amplifier based on transmission line theory and proposed a theory to obtain optimum transmission line length to minimize the reversed currents by cancelling those components. The reversed current is analyzed as being simply absorbed into the terminal resistance in the conventional analysis. In the proposed analysis, however, they are designed to be cancelled by each other with opposite phase by the optimal length of the transmission lint Circuit simulation and implementation using pHEMT transistor were performed to validate the proposed theory with the cutoff frequency of 3.6 GHz. From the measurement, maximum gain of 14.5dB and minimum gain of 12.3dB were achieved In the operation band. Moreover, measured efficiency of the proposed distributed amplifier is 25.6% at 3 GHz, which is 7.6%, higher than the conventional distributed amplifier. Measured output power Is about 10.9dBm, achieving 1.7dB higher output power than the conventional one. Those improvement is thought to be based on the cancellation of refersed current.