• 제목/요약/키워드: distributed antenna

검색결과 119건 처리시간 0.023초

다중 안테나 포트를 장착한 분산 안테나 시스템에서의 안테나 설계 방법 (Antenna Placement Designs for Distributed Antenna Systems with Multiple-Antenna Ports)

  • 이창희;박은성;이인규
    • 한국통신학회논문지
    • /
    • 제37A권10호
    • /
    • pp.865-875
    • /
    • 2012
  • 본 논문은 포트 당 일정 파워 제약을 전제한 상황에서, 다중 안테나를 장착한 분산 안테나 (distributed antenna: DA) 포트를 갖는 분산 안테나 시스템 (distributed antenna system: DAS)의 안테나 위치 설계 방법을 분석한다. 안테나 위치의 설계를 위해 복잡하게 셀 당 평균 ergodic sum rate를 최대화하는 대신, 본 논문에서는 단일 셀 상황에서는 signal-to-noise ratio (SNR) 기댓값의 lower bound에, 그리고 이중 셀 상황에서는 signal-to-leakage ratio (SLR) 기댓값의 lower bound에 각각 초점을 맞춘다. 단일 셀 상황의 경우, 기존의 반복적 알고리즘에 비해 SNR criterion의 최적화 문제는 닫힌 형태 (closed-form)의 솔루션을 제공한다. 또한, 이중 셀 상황에선 gradient ascent 방법을 이용한 알고리즘을 제안하여 SLR criterion의 최적화 솔루션을 도출한다.

Energy-efficiency Optimization Schemes Based on SWIPT in Distributed Antenna Systems

  • Xu, Weiye;Chu, Junya;Yu, Xiangbin;Zhou, Huiyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권2호
    • /
    • pp.673-694
    • /
    • 2021
  • In this paper, we intend to study the energy efficiency (EE) optimization for a simultaneous wireless information and power transfer (SWIPT)-based distributed antenna system (DAS). Firstly, a DAS-SWIPT model is formulated, whose goal is to maximize the EE of the system. Next, we propose an optimal resource allocation method by means of the Karush-Kuhn-Tucker condition as well as an ergodic method. Considering the complexity of the ergodic method, a suboptimal scheme with lower complexity is proposed by using an antenna selection scheme. Numerical results illustrate that our suboptimal method is able to achieve satisfactory performance of EE similar to an optimal one while reducing the calculation complexity.

Harmonic-Mean-Based Dual-Antenna Selection with Distributed Concatenated Alamouti Codes in Two-Way Relaying Networks

  • Li, Guo;Gong, Feng-Kui;Chen, Xiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권4호
    • /
    • pp.1961-1974
    • /
    • 2019
  • In this letter, a harmonic-mean-based dual-antenna selection scheme at relay node is proposed in two-way relaying networks (TWRNs). With well-designed distributed orthogonal concatenated Alamouti space-time block code (STBC), a dual-antenna selection problem based on the instantaneous achievable sum-rate criterion is formulated. We propose a low-complexity selection algorithm based on the harmonic-mean criterion with linearly complexity $O(N_R)$ rather than the directly exhaustive search with complexity $O(N^2_R)$. From the analysis of network outage performance, we show that the asymptotic diversity gain function of the proposed scheme achieves as $1/{\rho}{^{N_R-1}}$, which demonstrates one degree loss of diversity order compared with the full diversity. This slight performance gap is mainly caused by sacrificing some dual-antenna selection freedom to reduce the algorithm complexity. In addition, our proposed scheme can obtain an extra coding gain because of the combination of the well-designed orthogonal concatenated Alamouti STBC and the corresponding dual-antenna selection algorithm. Compared with the common-used selection algorithms in the state of the art, the proposed scheme can achieve the best performance, which is validated by numerical simulations.

Performance of Distributed MISO Systems Using Cooperative Transmission with Antenna Selection

  • Park, Jong-Hyun;Kim, Jae-Won;Sung, Won-Jin
    • Journal of Communications and Networks
    • /
    • 제10권2호
    • /
    • pp.163-174
    • /
    • 2008
  • Performance of downlink transmission strategies exploiting cooperative transmit diversity is investigated for distributed multiple-input single-output (MISO) systems, for which geographically distributed remote antennas (RA) in a cell can either communicate with distinct mobile stations (MS) or cooperate for a common MS. Statistical characteristics in terms of the signal-to-interference-plus-noise ratio (SINR) and the achievable capacity are analyzed for both cooperative and non-cooperative transmission schemes, and the preferred mode of operation for given channel conditions is presented using the analysis result. In particular, we determine an exact amount of the maximum achievable gain in capacity when RAs for signal transmission are selected based on the instantaneous channel condition, by deriving a general expression for the SINR of such antenna selection based transmission. For important special cases of selecting a single RA for non-cooperative transmission and selecting two RAs for cooperative transmission among three RAs surrounding the MS, closed-form formulas are presented for the SINR and capacity distributions.

Distributed Compressive Sensing Based Channel Feedback Scheme for Massive Antenna Arrays with Spatial Correlation

  • Gao, Huanqin;Song, Rongfang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권1호
    • /
    • pp.108-122
    • /
    • 2014
  • Massive antenna array is an attractive candidate technique for future broadband wireless communications to acquire high spectrum and energy efficiency. However, such benefits can be realized only when proper channel information is available at the transmitter. Since the amount of the channel information required by the transmitter is large for massive antennas, the feedback is burdensome in practice, especially for frequency division duplex (FDD) systems, and needs normally to be reduced. In this paper a novel channel feedback reduction scheme based on the theory of distributed compressive sensing (DCS) is proposed to apply to massive antenna arrays with spatial correlation, which brings substantially reduced feedback load. Simulation results prove that the novel scheme is better than the channel feedback technique based on traditional compressive sensing (CS) in the aspects of mean square error (MSE), cumulative distributed function (CDF) performance and feedback resources saving.

Exact Error Rate of Dual-Channel Receiver with Remote Antenna Unit Selection in Multicell Networks

  • Wang, Qing;Liu, Ju;Zheng, Lina;Xiong, Hailiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권8호
    • /
    • pp.3585-3601
    • /
    • 2016
  • The error rate performance of circularly distributed antenna system is studied over Nakagami-m fading channels, where a dual-channel receiver is employed for the quadrature phase shift keying signals detection. To mitigate the Co-Channel Interference (CCI) caused by the adjacent cells and to save the transmit power, this work presents remote antenna unit selection transmission based on the best channel quality and the maximized path-loss, respectively. The commonly used Gaussian and Q-function approximation method in which the CCI and the noise are assumed to be Gaussian distributed fails to depict the precise system performance according to the central limit theory. To this end, this work treats the CCI as a random variable with random variance. Since the in-phase and the quadrature components of the CCI are correlated over Nakagami-m fading channels, the dependency between the in-phase and the quadrature components is also considered for the error rate analysis. For the special case of Rayleigh fading in which the dependency between the in-phase and the quadrature components can be ignored, the closed-form error rate expressions are derived. Numerical results validate the accuracy of the theoretical analysis, and a comparison among different transmission schemes is also performed.

Performance Analysis Based on RAU Selection and Cooperation in Distributed Antenna Systems

  • Wang, Gang;Meng, Chao;Heng, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권12호
    • /
    • pp.5898-5916
    • /
    • 2018
  • In this paper, the downlink performance of multi-cell distributed antenna systems (DAS) with a single user in each cell is investigated. Assuming the channel state information is available at the transmitter, four transmission modes are formulated as combinations of remote antenna units (RAUs) selection and cooperative transmission, namely, non-cooperative transmission without RAU selection (NCT), cooperative transmission without RAU selection (CT), non-cooperative transmission with RAU selection (NCT_RAUS), and cooperative transmission with RAU selection (CT_RAUS). By using probability theory, the cumulative distribution function (CDF) of a user's signal to interference plus noise ratio (SINR) and the system ergodic capacity under the above four modes are determined, and their closed-form expressions are obtained. Furthermore, the system energy efficiency (EE) is studied by introducing a realistic power consumption model of DAS. An expression for determining EE is formulated, and the closed-form tradeoff relationship between spectral efficiency (SE) and EE is derived as well. Simulation results demonstrate their consistency with the theoretical analysis and reveal the factors constraining system EE, which provide a scientific basis for future design and optimization of DAS.

한국산 산민달팽이 ( Incilaria fruhstorferi ) 후촉각의 형테 및 조직화학적인 연구 (A Morphological and Histochemical Study on the Posterior Tentacle Antenna of the Korean Slug , Incilaria fruhstorferi)

  • 김영언;장남섭
    • 한국패류학회지
    • /
    • 제12권1호
    • /
    • pp.1-17
    • /
    • 1996
  • Morphological and histochemical characteristics of the cells in posterior tentacle antenna of Korean slug, Incilaria fruhstorferi were observed with light microscope. The epithelium of the posterior tentacle antenna was composed of supporting cells, sensory neurons and type-a clear cell. The columnar supporting epithelium was widely distributed in the posterior tentacle antenna, and the upper end of the cell was covered with acidic mucopolysaccharide. Nerve endings of the sensory neuron were distributed between type-a clear cells. It was usually located in tentacular knob, and the number of them gradually decrdased as close as tentacular stalk. Several cilia were observed on the nerve ending. Type-a clear cells were very brightly stained with all staining used, and the neutral mucous guanules distributed in the cytoplasm. Collar cells, type-b clear cell and various types of secrdtory cells distributed in the connective tissue. The collar cells were clustering in connective tissue, and the cytoplasm were filled with neutral mucous guanules. The cells and granules were stained with dark brown by silver nitrate stain. Type-b clear cells were irregular in shape and their cytoplasms were brightly stained wth many stains used. Ten types of secretory cells evenly distributed in the connective tissue and muscle layers of the posterior tentacle antenna. The five types of the secretory cells(A, B, E, J and L)seemed to secrete acidic mucopolysaccharide, and the other five type of the cell(C, D, F, H, and L)seemed to secrete neutral mucopolysaccharide. Muscular tissue composed of well-developed thick longitudinal muscle layers and thin circular muscle layers. Type-L secretory cells clustered only in muscular layers and they contained acidic mucopolysaccharides.

  • PDF

Distributed Space-Time Coded Non-Orthogonal DF Protocols with Source Antenna Switching

  • Jin, Xianglan;Yang, Jae-Dong;No, Jong-Seon;Shin, Dong-Joon
    • Journal of Communications and Networks
    • /
    • 제12권5호
    • /
    • pp.492-498
    • /
    • 2010
  • In this paper, a new distributed space-time coded (DS-TCed) non-orthogonal decode-and-forward (NDF) protocol with source antenna switching (SAS) is proposed, where two antennas associated with each radio frequency chain can be alternatively used in the first and second phases. Several DSTC schemes for the NDF with SAS (NDF-SAS) protocol are proposed and their average pairwise error probability for the error-free source-relay (SR) channel is also derived. The simulation results show that the NDF-SAS protocol achieves larger diversity order than the NDF protocol under the error-free and erroneous SR channels.

다중 사용자 다중 경로 페이딩 채널에서 분산 안테나 시스템을 위한 주파수 영역 Equal-Gain-Combining TR 기법의 Capacity와 Secrecy Rate 분석 (Capacity and Secrecy Rate Analysis of a Frequency-Domain Equal-Gain-Combining TR Scheme for Distributed Antenna Systems in Multi-User Multi-Path Fading Channels)

  • 김명석;이충용
    • 전자공학회논문지
    • /
    • 제49권10호
    • /
    • pp.47-53
    • /
    • 2012
  • 시간 반전 (time-reversal, TR) 전처리 기법은 유효 채널의 전력을 특정 시간으로 집중시키는 역할을 하며, 이를 통해 단일 탭 수신기의 수신 성능을 향상시킬 수 있다. 선형 블록 전처리 형태를 가지는 주파수 영역 동일 이득 결합 (frequency-domain equal-gain-combining, FD-EGC) TR 기법은 기존의 TR 기법에 비해 temporal focusing 성능이 뛰어나다. 또한, FD-EGC는 분산 안테나 시스템 (distributed antenna systems, DAS)에서 minimum mean square error 수신기의 수신 성능을 향상시킨다. 본 논문에서는 이러한 FD-EGC의 수신 성능 분석에 그치지 않고, capacity 성능을 분석하는 것에 중점을 두었다. 우선, DAS에서 FD-EGC의 capacity를 유도하였으며, 안테나 수에 따라 capacity가 증가함을 보였다. 이어 정보 이론적 보안 측면에서 secrecy rate를 유도하였으며, 이를 통해 FD-EGC가 다른 사용자에게 보안을 유지하면서도 목표 사용자에게는 많은 양의 정보를 전송할 수 있음을 보였다.