Kaiwartya, Omprakash;Prakash, Shiv;Abdullah, Abdul Hanan;Hassan, Ahmed Nazar
KSII Transactions on Internet and Information Systems (TIIS)
/
v.9
no.8
/
pp.2821-2839
/
2015
Energy consumption by large computing systems has become an important research theme not only because the sources of energy are depleting fast but also due to the environmental concern. Computational grid is a huge distributed computing platform for the applications that require high end computing resources and consume enormous energy to facilitate execution of jobs. The organizations which are offering services for high end computation, are more cautious about energy consumption and taking utmost steps for saving energy. Therefore, this paper proposes a scheduling technique for Minimizing Energy consumption using Adapted Genetic Algorithm (MiE-AGA) for dependent tasks in Computational Grid (CG). In MiE-AGA, fitness function formulation for energy consumption has been mathematically formulated. An adapted genetic algorithm has been developed for minimizing energy consumption with appropriate modifications in each components of original genetic algorithm such as representation of chromosome, crossover, mutation and inversion operations. Pseudo code for MiE-AGA and its components has been developed with appropriate examples. MiE-AGA is simulated using Java based programs integrated with GridSim. Analysis of simulation results in terms of energy consumption, makespan and average utilization of resources clearly reveals that MiE-AGA effectively optimizes energy, makespan and average utilization of resources in CG. Comparative analysis of the optimization performance between MiE-AGA and the state-of-the-arts algorithms: EAMM, HEFT, Min-Min and Max-Min shows the effectiveness of the model.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.13
no.12
/
pp.6145-6158
/
2019
It is a challenge for the current security industry to respond to a large number of malicious codes distributed indiscriminately as well as intelligent APT attacks. As a result, studies using machine learning algorithms are being conducted as proactive prevention rather than post processing. The k-NN algorithm is widely used because it is intuitive and suitable for handling malicious code as unstructured data. In addition, in the malicious code analysis domain, the k-NN algorithm is easy to classify malicious codes based on previously analyzed malicious codes. For example, it is possible to classify malicious code families or analyze malicious code variants through similarity analysis with existing malicious codes. However, the main disadvantage of the k-NN algorithm is that the search time increases as the learning data increases. We propose a fast k-NN algorithm which improves the computation speed problem while taking the value of the k-NN algorithm. In the test environment, the k-NN algorithm was able to perform with only the comparison of the average of similarity of 19.71 times for 6.25 million malicious codes. Considering the way the algorithm works, Fast k-NN algorithm can also be used to search all data that can be vectorized as well as malware and SSDEEP. In the future, it is expected that if the k-NN approach is needed, and the central node can be effectively selected for clustering of large amount of data in various environments, it will be possible to design a sophisticated machine learning based system.
Journal of the Institute of Convergence Signal Processing
/
v.17
no.1
/
pp.1-9
/
2016
In this paper, for the improvement of quality of service(QoS) performance of heterogeneous networks, multi-cell scheduling is proposed. In order to implement the proposed algorithm, for the recognition of the impact on the throughput performance of users, macro-pico-cells that form distributed architecture were proposed. In operating heterogeneous networks, considering the centralized structure, a macro-RRH(Remote Radio Head) deployment scenario was proposed. For interference mitigation of the proposed system, by applying the optional sub-frame, through CQI(Channel Quality Indicator) measurement for each sub-frame period, constraint conditions were measured according to system situations. For the simplification, the pattern of the same ABS muting was assumed. In the above two multi-cell environments, the algorithm of high-speed load balancing maintenance was proposed.
The Journal of Korean Institute of Communications and Information Sciences
/
v.23
no.4
/
pp.1035-1044
/
1998
A new multi-channel access scheme and the associated network architecture for a single-hop WDM local area network is proposed in this paper. The proposed architecture has Central Scheduling Node (CSN) for the transmission coordination among many users, which is one of the key issues in single-hop WDM networks. The data channels, source nodes, and destination nodes are selected at CSN in very simple menner. Our scheme can relive the control processing overhead at all nodes in the network which is caused in existing distributed scheduling algorithms. CSN is simple in the architecture can be implemented easily. in respect to the network performance, the maximum obtainable throughput is up to that of the ideal output queuing because of collision free scheduling. We use the MQMS (multi-queue multi-server) model for performance analaysis.
Journal of the Korea Society of Computer and Information
/
v.8
no.1
/
pp.51-59
/
2003
It is effective to be located in the double nodes in the distributed object replication systems, then object which nodes share is the same contents. The nodes store an access information on their local cache as it access to the system. and then the nodes fetch and use it, when it needed. But with time the coherence Problems will happen because a data carl be updated by other nodes. So keeping the coherence of the system we need a mechanism that we managed the to improve to improve the performance and availability of the system effectively. In this paper to keep coherence in the shared memory condition, we can set the limited parallel performance without the additional cost except the coherence cost using it to keep the object at the proposed adaptive duplication object(ADO) algorithms. Also to minimize the coherence maintenance cost which is the bi99est overhead in the duplication method, we must manage the object effectively for the number of replication and location of the object replica which is the most important points, and then it determines the cos. And that we must study the adaptive duplication object management mechanism which will improve the entire run time.
A problem of many fractal image compression algorithms providing good quality at low bit rate is that the decoding time rests on an iterative procedure whose complexity is imag-dependent. This paper proposes an iterative-free fractal image decoding algorithm to reduce the decoding time. In the proposed method, under the encoder previously with the same codebook image as an initial image to be used at the decoder, the fractal coefficients are obtained through calculating the similarity between the codebook image and an input image to be encoded. As the decoding time could be remarkably reduced. For verifying the validity and universality of proposed method, We evaluated and analyzed the performance of decoding time and image quality for a number of still images and a moving picture with different distributed characteristics.
Compared with the previous recovery algorithms for causal message logging, Elnozahy's recovery algerian considerably reduces the number of stable storage accesses and enables live processes to execute their computations continuously while performing its recovery procedure. However, if causal message logging is used with asynchronous checkpointing, the state of the system may be inconsistent after having executed this algorithm in case of concurrent failures. In this paper, we show these inconsistent cases and propose a low-cost recovery algorithm for causal message logging to solve the problem. To ensure the system consistency, this algorithm allows the recovery leader to obtain recovery information from not only the live processes, but also the other recovering processes. Also, the proposed algorithm requires no extra message compared with Elnozahy's one and its additional overhead incurred by message piggybacking is significantly low. To demonstrate this, simulation results show that the first only increases about 1.0%$\sim$2.1% of the recovery information collection time compared with the latter.
Journal of the Korean Data and Information Science Society
/
v.28
no.4
/
pp.755-768
/
2017
As Big Data becomes the core of the fourth industrial revolution, big data-based processing and analysis capabilities are expected to influence the company's future competitiveness. Comparative studies of RHadoop and RHIPE that integrate R and Hadoop environment, have not been discussed by many researchers although RHadoop and RHIPE have been discussed separately. In this paper, we constructed big data platforms such as RHadoop and RHIPE applicable to large scale data and implemented the machine learning algorithms such as multiple regression and logistic regression based on MapReduce framework. We conducted a study on performance and scalability with those implementations for various sample sizes of actual data and simulated data. The experiments demonstrated that our RHadoop and RHIPE can scale well and efficiently process large data sets on commodity hardware. We showed RHIPE is faster than RHadoop in almost all the data generally.
This paper presents adaptive execution techniques that determine whether parallelized loops are executed in parallel or sequentially in order to maximize performance. The adaptation and performance estimation algorithms are implemented in a compiler preprocessor. The preprocessor inserts code that automatically determines at compile-time or at run-time the way the parallelized loops are executed. Using a set of standard numerical applications written in Fortran77 and running them with our techniques on a distributed shared memory multiprocessor machine (SGI Origin2000), we obtain the performance of our techniques, on average, 26%, 20%, 16%, and 10% faster than the original parallel program on 32, 16, 8, and 4 processors, respectively. One of the applications runs even more than twice faster than its original parallel version on 32 processors.
KIPS Transactions on Software and Data Engineering
/
v.6
no.1
/
pp.1-8
/
2017
Given a multi-dimensional dataset of tuples, a skyline query returns a subset of tuples which are not 'dominated' by any other tuples. Skyline query is very useful in Big data analysis since it filters out uninteresting items. Much interest was devoted to the MapReduce-based parallel processing of skyline queries in large-scale distributed environment. There are three requirements to improve parallelism in MapReduced-based algorithms: (1) workload should be well balanced (2) avoid redundant computations (3) Optimize network communication cost. In this paper, we introduce MR-SEAP (MapReduce sample Skyline object Equality Angular Partitioning), an efficient angular space partitioning based skyline query processing using sampling-based pruning, which satisfies requirements above. We conduct an extensive experiment to evaluate MR-SEAP.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.