
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 8, Aug. 2015 2821
Copyright ⓒ 2015 KSII

Minimizing Energy Consumption in
Scheduling of Dependent Tasks using

Genetic Algorithm in Computational Grid

Omprakash Kaiwartya1, Shiv Prakash2, Abdul Hanan Abdullah3, Ahmed Nazar Hassan4
1,3,4Faculty of Computing, Universiti Teknologi Malausia (UTM),

81310 Skudai Johor, Malaysia
[e-mails: omokop@gmail.com, hanan@utm.my, nhahmed2@live.utm.my]

 2Department of Chemical Engineering, Indian Institute of Technology Delhi,
New Delhi-110 016, India

[e-mail: shivprakash@chemical.iitd.ac.in]
*Corresponding Author: Shiv Prakash

Received February 13, 2015; revised May 6, 2015; accepted June 6, 2015;
 published August 31, 2015

Abstract

Energy consumption by large computing systems has become an important research theme not
only because the sources of energy are depleting fast but also due to the environmental concern.
Computational grid is a huge distributed computing platform for the applications that require
high end computing resources and consume enormous energy to facilitate execution of jobs. The
organizations which are offering services for high end computation, are more cautious about
energy consumption and taking utmost steps for saving energy. Therefore, this paper proposes a
scheduling technique for Minimizing Energy consumption using Adapted Genetic Algorithm
(MiE-AGA) for dependent tasks in Computational Grid (CG). In MiE-AGA, fitness function
formulation for energy consumption has been mathematically formulated. An adapted genetic
algorithm has been developed for minimizing energy consumption with appropriate
modifications in each components of original genetic algorithm such as representation of
chromosome, crossover, mutation and inversion operations. Pseudo code for MiE-AGA and its
components has been developed with appropriate examples. MiE-AGA is simulated using Java
based programs integrated with GridSim. Analysis of simulation results in terms of energy
consumption, makespan and average utilization of resources clearly reveals that MiE-AGA
effectively optimizes energy, makespan and average utilization of resources in CG. Comparative
analysis of the optimization performance between MiE-AGA and the state-of-the-arts algorithms:
EAMM, HEFT, Min-Min and Max-Min shows the effectiveness of the model.

Keywords: Energy Consumption, Scheduling, Genetic Algorithm (GA), Dynamic Voltage
Frequency Scaling (DVFS), Idle Time, Makespan

http://dx.doi.org/10.3837/tiis.2015.08.004 ISSN : 1976-7277

2822 Kaiwartya et al.: Minimizing Energy Consumption in Scheduling of Dependent Tasks using Genetic
Algorithm in Computational Grid

1. Introduction

Computational Grid (CG) is a hardware and software infrastructure that is geographically
distributed and connected via high speed communication networks which provides highly
satisfactory computing resources to the grid users [1]. One of the prime goal of CG is to fulfill
the different computing requirement of jobs submitted by the grid users [2]. Recently,
optimizing electrical energy consumption in high end computing resources has witnessed a
significant research attention which is aimed at to keep the environment green [3]. This can be
attributed to the fact that it not only depletes the resources of energy but also a case of concern
considering environment and cost. In order to save electrical energy in CG, tasks are migrated
from lightly loaded nodes to average loaded nodes so that the lightly loaded nodes can be
switched off [4]. High end computing resources requires more electrical energy and therefore,
there is a tradeoff between computing power and electrical energy. From the hardware point of
view, energy saving is being addressed by the researchers and it is believed that with the
advancement in technology modern computing resources will offer better computational power
using less amount of electrical energy. From the software point of view, the design of the
software system should be energy efficient. This work deals with the design of grid scheduler to
meet the energy requirement of grid efficiently. It considers dependency of tasks of a job
forming a directed acyclic graph. Dependent tasks submitted to CG form a grid workflow.
Generally, grid workflow has two types of schedulers; namely, global scheduler and local
scheduler. Global scheduler is responsible to fulfill the requirements of the users by distributing
the jobs to various nodes of the grid [5, 6]. Local scheduler handles local scheduling policy on
the nodes of grid. Workflow scheduling problem in computational grid, has been noted to be an
NP-Hard problem due to various constraints involved [7]. Therefore, energy based grid
workflow scheduling is of prime concern that has been addressed in this work.

Faster nodes takes lesser time for execution but they consume higher electrical energy.
Therefore, in energy-aware scheduling, job allocation to a grid is done in a manner that
minimizes energy consumption. It has been observed that meta-heuristic techniques are very
useful for such optimization problems [8]. Therefore, this paper uses a meta-heuristic: GA to
propose an energy-aware scheduling model for grid workflow. The rest of the paper is organized
as follows. In section 2, related literatures are reviewed with pros and cons of each research
article considered. In section 3, energy consumption in CG is mathematically formulated as an
optimization problem and an adapted genetic algorithm is proposed to solve the optimization
problem. In section 4, simulation and analysis of results are discussed. In section 5, conclusion
and future research direction of the work is presented.

2. Related Work
Makespan, turnaround time, energy, reliability, resource availability etc. are some of the
important characteristic parameters often optimized by scheduling the jobs appropriately on grid

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 8, August 2015 2823

nodes. The grid scheduling problem has been extensively discussed in literature [9-11]. GA is
often used to address the scheduling problem in grid, as the problem is NP-Hard [12, 13].

To study the effect of Inter Process Communication (IPC) in task scheduling, GA is used
[14]. Load balancing that considers load distribution and load variation on grid nodes, using GA
has been elaborated in [15, 16]. Another important parameter, security, also finds place in many
research works. Security aware scheduling using GA in CG is discussed in [17] focusing on
security optimization. Availability is discussed in [18, 19] that demonstrate the availability
metric. Maximization of availability for task scheduling problem in CG using GA is suggested in
[20]. Makespan minimization in CG has been discussed in [21-25]. Dependent task scheduling
in grid computing is discussed in [26].

The above discussed works clearly indicate that GA has been widely used for workflow
scheduling in grid. This also points out that energy optimization are rarely considered for
workflow scheduling in grid, which is the prime objective of the proposed work. In [27], energy
aware scheduling for independent tasks using GA is discussed. In [28], Dynamic voltage
frequency scaling (DVFS) is used which is an effective technique for processor energy reduction.
It adjusts processor voltage and frequency level during runtime. In [29], system optimization
procedures constructed on dynamic reconfiguration are broadly implemented for energy
conservation. DVFS techniques have been extensively studied for processor energy conservation
in this paper. A general and flexible model for energy minimization based on reconfiguration
dynamics in multitasking systems is proposed. In [30] scheduling problem on a single processor
for a given set of jobs is discussed. Further, processor can vary its speed and hibernate to reduce
energy consumption. Therefore the schedule minimizes the overall consumed energy.

In MIN-MIN scheduling, tasks are assigned based on the completion time of a grid workflow.
Heterogeneous Earliest Time First (HEFT) algorithm assigns higher priority to the unallocated
independent tasks in the grid workflow. Rank calculation is based on the expected time for each
task and communication cost of two successive tasks. Task having maximum rank is assigned
higher priority. The tasks are scheduled based on their priorities. The readers are advised to refer
to the article in [31] for details of MIN-MIN, MAX-MIN and HEFT. Energy Aware Max-Min
(EAMM) [32] is a variant of Max-Min which considers energy in the first phase and completion
time in the second phase. In each iteration it selects the pairs (task, node) that minimizes the
energy consumption for each task in phase 1 then it selects the pair that maximizes the
completion time in phase 2. The aforementioned models do not consider dependency of tasks in
scheduling.

3. MiE-AGA
A computation grid having 𝑀 computational nodes is assumed for the problem formulation. The
grid workflow scheduling problem is considered equivalent to the mapping of tasks to nodes of
the grid with the objective of minimization of energy consumption. It is also assumed that all
parent tasks finish their execution before the execution of the exit task. Grid users submit their
jobs to the grid and each job consists of number of tasks. A queue of jobs waiting to be assigned
to the nodes of the grid is considered. The length of the queue depends on the arrival and
departure rate of jobs which follows Poisson distribution and execution time of task follows

2824 Kaiwartya et al.: Minimizing Energy Consumption in Scheduling of Dependent Tasks using Genetic
Algorithm in Computational Grid

exponential distribution [33]. Task scheduling of a node in CG (local scheduling) follows
M/M/1 model whereas Task scheduling in all nodes in CG (global scheduling) follows M/M/S
model. All the tasks submitted to CG are partially dependent and parallel in nature. The average
load and service rate at 𝑗𝑡ℎnode are 𝜆𝑗 and 𝜇𝑗 respectively and 𝜇𝑗 > 𝜆𝑗. Average waiting time at
𝑗𝑡ℎ node using M/M/S model is given by Equation (1).

𝜆𝑗
𝜇𝑗�𝜇𝑗−𝜆𝑗�

 (1)

The service average time at 𝑗𝑡ℎnode is 1/𝜇𝑗. The execution time 𝐸𝑇𝐶𝑖,𝑗for computation of 𝑖𝑡ℎ task
on 𝑗𝑡ℎ node can be expressed as given in Equation (2).

𝐸𝑇𝐶𝑖,𝑗 = ∑ ��
𝜆𝑗

𝜇𝑗�𝜇𝑗−𝜆𝑗�
+ 1

𝜇𝑗
� × 𝛿𝑖,𝑗 × 𝑁𝑜𝐼𝑖�

𝑛𝑗
𝑡𝑎𝑠𝑘

𝑖=1 (2)

𝛿𝑖,𝑗 = �1, 𝑖𝑓 𝑖𝑡ℎ task is alloted to 𝑗𝑡ℎ node
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3)

Where, 𝑛𝑗𝑡𝑎𝑠𝑘represents the number of tasks allotted to 𝑗𝑡ℎ node, 𝛿𝑖,𝑗 is the binary parameter
and
𝑁𝑜𝐼𝑖 represents the number of instructions in 𝑖𝑡ℎ task. The notations used throughout in this
research article are listed in Table 1 with their purpose of usage.

Table 1. Notation Table

Notation Meaning Notation Meaning
𝑖 Subscript for task 𝑇𝑗𝑖𝑑𝑙𝑒 Idle time
𝑗 𝑜𝑟 𝑘 Subscript for node 𝑀𝑠𝑝𝑎𝑛 Makespan of a CG
𝑙 Subscript for solution path 𝜆𝑗 Average load
𝑛 Number of tasks in grid workflow 𝜇𝑗 Average service rate
𝑀 Number of nodes in grid 𝑉𝑗𝑚𝑎𝑥 Maximum voltage
𝛿𝑖,𝑗 Presence/absence of task on node 𝑉𝑗𝑚𝑖𝑛 Minimum voltage
𝑁𝑜𝐼𝑖 Number of instructions 𝑇𝑖 Task of grid workflow
𝐴𝑁𝐶𝑖 Set of ancestors 𝑆𝑒 Set of empty nodes
𝐷𝐸𝑆𝑖 Set of descendants 𝑆𝑛𝑒 Set of non-empty nodes
𝐷𝑉𝐹𝑆 Dynamic Voltage Frequency Scaling 𝛾 DVFS Constant
𝐸𝑇𝐶𝑖,𝑗 Execution time for computation 𝐻𝐹𝑗 Highest frequency
𝑁𝑎𝑡 Array of number of tasks on node 𝐿𝐹𝑗 Lowest frequency
𝐸𝑆𝑇𝑖,𝑗 Earliest start time 𝐿𝑆𝑇𝑖 ,𝑗 Latest start time
𝛼𝑖 Presence/absence of uncompleted ancestors 𝐿𝐶𝑇𝑗 Latest completion time
𝑁𝑝 Number of dependent execution paths 𝑇𝐸𝑇𝑗 Total execution time
𝐴𝑈𝑙 Average utilization of 𝑖𝑡ℎ solution 𝑇𝐼𝑇𝑗 Total idle time
𝑁𝑙𝑡 Number of tasks on solution path 𝐸𝑗 Energy Consumption
𝑇𝐸 Total energy consumption of CG 𝐸𝐶𝑇𝑖,𝑗 Earliest completion time
𝑈𝑗 Utilization of resources 𝐶𝐶𝑘,𝑗 Communication cost

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 8, August 2015 2825

3.1 Fitness Function Formulation for Energy Consumption
In this section, fitness function formulation for determining energy consumption in nodes of the
CG is described. Nodes of the CG are involved in execution of tasks of grid workflow. Initially
all nodes of the CG are considered empty which means no tasks have been allocated to any
nodes. For each task 𝑇𝑖 a binary parameter 𝛼𝑖 is initialized. The initialization process can be
expressed as given in Equation (4).

𝛼𝑖 = �1,𝐴𝑁𝐶𝑖 = 𝜙
0,𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ,∀𝑇𝑖 (4)

For each tasks 𝑇𝑖 with 𝛼𝑖 = 1 , initialization of 𝐸𝑆𝑇𝑖,𝑗 and 𝐸𝐶𝑇𝑖,𝑗 are performed using the
following two scenarios. In the first scenario, all the nodes are considered empty which
means 𝑁𝑎𝑡[𝑗] = 0, ∀ 𝑗 ∈ {1,2,3, … ,𝑀} or 𝑆𝑛𝑒 = ∅. The initialization in the first scenarios can
be expressed as given by Equation (5).

𝐸𝑆𝑇𝑖,𝑗 = 0
 𝐸𝐶𝑇𝑖,𝑗 = 𝐸𝑇𝐶𝑖,𝑗

� ,∀𝑇𝑖 , 𝛼𝑖 = 1 𝑎𝑛𝑑 𝑁𝑎𝑡[𝑗] = 0, ∀ 𝑗 ∈ {1,2,3, … ,𝑀} (5)

For example, 𝑖𝑡ℎtask is allocated to the 𝑗𝑡ℎnode with minimum 𝐸𝐶𝑇𝑖,𝑗, thus 𝑗𝑡ℎnode will be
treated as non-empty nodes and 𝑁𝑎𝑡[𝑗] which contains the number of allocated jobs to 𝑗𝑡ℎnode
will be incremented by 1. Subsequently, 𝑗𝑡ℎnode will be removed from the set of empty nodes.
In the second scenario, at least one node is considered non-empty which means ∃ 𝑗 ∈
{1,2,3, … ,𝑀},𝑁𝑎𝑡[𝑗] ≥ 1 or 𝑆𝑛𝑒 ≠ ∅..The initialization in the second scenario can be expressed
as given by Equation (6).

𝐸𝑆𝑇𝑖,𝑗 = min𝑖=1,2,3,…𝑁𝑎𝑡[𝑗]�𝐸𝑇𝐶𝑖,𝑗�,

 𝐸𝐶𝑇𝑖,𝑗 = ∑ 𝐸𝑆𝑇𝑖,𝑗 + 𝐸𝑇𝐶𝑖,𝑗
𝑁𝑎𝑡[𝑗]
𝑖=1

� ,∀𝑇𝑖 , 𝛼𝑖 = 1 𝑎𝑛𝑑 ∃ 𝑗 ∈ {1,2,3, … ,𝑀},𝑁𝑎𝑡[𝑗] ≥ 1 (6)

After the above initialization, the value of 𝑁𝑎𝑡[𝑗] is incremented or decremented and
according the node 𝑗 will be added to set of empty or non-empty nodes. After completion of the
initialization for the 𝑖𝑡ℎtask, set of ancestors of all the descendants of 𝑖𝑡ℎ task is updated by
removing 𝑖𝑡ℎtask from the ancestors as given by Equation (7).

𝐴𝑁𝐶𝑘 = 𝐴𝑁𝐶𝑘 − {𝑇𝑖},∀ 𝑇𝑘 ∈ 𝐷𝐸𝑆𝑖 (6)
The total execution time 𝑇𝐸𝑇𝑗 for all allocated tasks to 𝑗𝑡ℎnode can be computed by adding 𝐸𝑇𝐶𝑖,𝑗

of all the tasks to 𝑇𝐸𝑇𝑗 as given by Equation (7).

𝑇𝐸𝑇𝑗 = ∑ 𝐸𝑇𝐶𝑖,𝑗
𝑁𝑎𝑡[𝑗]
𝑖=1 (7)

For each tasks 𝑇𝑖 with 𝛼𝑖 = 0 which means all the parents are not completed, the
initialization of 𝐸𝑆𝑇𝑖,𝑗 and 𝐸𝐶𝑇𝑖,𝑗 are performed using the following two scenarios. In the first
scenario, 𝑁𝑎𝑡[𝑗] = 0, ∀ 𝑗 ∈ {1,2,3, … ,𝑀} or 𝑆𝑛𝑒 = ∅ is considered and the initialization can be
expressed as given by Equation (8).
𝐸𝑆𝑇𝑖,𝑗 = max𝑘=1,2,3,…,𝑁𝑎𝑡[𝑗]�𝐸𝐶𝑇𝑘,𝑗 + 𝐶𝐶𝑘,𝑗�

 𝐸𝐶𝑇𝑖,𝑗 = 𝐸𝑆𝑇𝑖,𝑗 + 𝐸𝑇𝐶𝑖,𝑗
� ,∀𝑇𝑖 , 𝛼𝑖 = 𝑁𝑎𝑡[𝑗] = 0, ∀ 𝑗 ∈ {1,2, . . ,𝑀},𝑇𝑘 ∈ 𝐷𝐸𝑆𝑖 (8)

After the initialization, 𝑁𝑎𝑡[𝑗]is incremented by 1 and 𝑗𝑡ℎ node is removed from the set of
empty nodes. In the second scenario, ∃ 𝑗 ∈ {1,2,3, … ,𝑀},𝑁𝑎𝑡[𝑗] ≥ 1 or 𝑆𝑛𝑒 ≠ ∅ is considered

2826 Kaiwartya et al.: Minimizing Energy Consumption in Scheduling of Dependent Tasks using Genetic
Algorithm in Computational Grid

and the initialization can be expressed as given by Equation (9).
𝐸𝑆𝑇𝑖,𝑗 = max �max𝑘∈𝐴𝑁𝐶𝑖�𝐸𝐶𝑇𝑘,𝑗 + 𝐶𝐶𝑘,𝑖� , min𝑢=1,2,3,…,𝑁𝑎𝑡[𝑗]�𝐸𝑇𝐶𝑢,𝑗 + 𝐶𝐶𝑢,𝑖� � ,

 (9)

and, 𝐸𝐶𝑇𝑖,𝑗 = 𝐸𝑆𝑇𝑖,𝑗 + 𝐸𝑇𝐶𝑖,𝑗 ,∀𝑇𝑖 , 𝛼𝑖 = 1 𝑎𝑛𝑑 ∃ 𝑗 ∈ {1,2, … ,𝑀},𝑁𝑎𝑡[𝑗] ≥ 1
After the initialization, 𝑁𝑎𝑡[𝑗] is incremented by 1. The latest completion time

𝐿𝐶𝑇𝑗 of a grid work flow at 𝑗𝑡ℎ node can be computed as given by Equation (10).
𝐿𝐶𝑇𝑗 = max𝑙=1,2,…,𝑁𝑝 �∑ 𝐸𝐶𝑇𝑘,𝑗

𝑁𝑙
𝑡

𝑘=1 � (10)
Makespan 𝑀𝑠𝑝𝑎𝑛 of the CG is the maximum 𝐿𝐶𝑇𝑗 of all the grid workflow being executed in
different nodes. By using Equation (10), 𝑀𝑠𝑝𝑎𝑛 can be computed as given by Equation (11).

𝑀𝑠𝑝𝑎𝑛 = max𝑗=1,2,…,𝑀�𝐿𝐶𝑇𝑗� (11)

Idle time 𝑇𝑗𝑖𝑑𝑙𝑒 of 𝑗𝑡ℎnode can be computed as given by Equation (12).
𝑇𝑗𝑖𝑑𝑙𝑒 = 𝑀𝑠𝑝𝑎𝑛 − 𝑇𝐸𝑇𝑗 ,∀ 𝑗 ∈ 𝑆𝑛𝑒 (12)

Energy 𝐸𝑗consumed by 𝑗𝑡ℎnode for executing all the allocated tasks can be computed as given by
Equation (13).

𝐸𝑗 = 𝛾 ��𝐿𝐹𝑗 × 𝑇𝑗𝑖𝑑𝑙𝑒 × �𝑉𝑗𝑚𝑖𝑛�
2� + �𝐻𝐹𝑗 × 𝑇𝐸𝑇𝑗 × �𝑉𝑗𝑚𝑎𝑥�

2�� (13)
Total energy 𝑇𝐸 consumed by all the nodes in the CG for executing grid workflows is given by
Equation (14).

𝑇𝐸 = ∑ 𝐸𝑗𝑀
𝑗=1 (14)

Utilization 𝑈𝑗 of resources at 𝑗𝑡ℎnode can be computed as given by Equation (15).

𝑈𝑗 =
𝐸𝑗

𝑀𝑠𝑝𝑎𝑛
 (15)

Average utilization 𝐴𝑈𝑙 of all the nodes in a CG by 𝑙𝑡ℎsolution can be expressed as given by Equation
(16)

𝐴𝑈𝑙 =
∑ 𝑈𝑗
𝑀
𝑗=1
𝑀

 (16)

3.2 Adapted Genetic Algorithm
In this section, various components of adapted genetic algorithm developed for minimizing
energy consumption are described.

3.2.1 Representation of Chromosome
The representation of chromosome which is a potential solution of the identified problem related
to energy consumption is shown in Fig. 1.

Fig. 1. Representation of chromosome

where, 𝑖, 𝑗,𝑘, 𝑙,𝑚 ∈ {1,2,3, … ,𝑀} . The above representation of chromosome shows an
ordered sequence of nodes considering the dependencies of the tasks. All the tasks are allocated
to the nodes of CG following the order of the sequence of the chromosome. In other words, 1st

𝑁𝑜𝑑𝑒𝑖 𝑁𝑜𝑑𝑒𝑗 𝑁𝑜𝑑𝑒𝑘 𝑁𝑜𝑑𝑒𝑖 𝑁𝑜𝑑𝑒𝑘 … 𝑁𝑜𝑑𝑒𝑙 𝑁𝑜𝑑𝑒𝑚 𝑁𝑜𝑑𝑒𝑙 𝑁𝑜𝑑𝑒𝑚

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 8, August 2015 2827

task is allocated to 𝑁𝑜𝑑𝑒𝑖, 2nd task is allocated to 𝑁𝑜𝑑𝑒𝑗, 3rd task is allocated to 𝑁𝑜𝑑𝑒𝑘 and the
last task is allocated to 𝑁𝑜𝑑𝑒𝑚 (cf. Fig. 1). The length of the chromosomes considering them as
one dimensional arrays is equal to the total number of tasks available for allocation. The
crossover and mutation operations used in MiE-AGA are described using Pseudo code and
example.

3.2.2 Adapted Crossover
The Pseudo code of crossover operation adapted for MiE-AGA is given in Algorithm 1. To
make the process of adapted crossover more understandable, an example (cf. Fig. 2) is provided
for readers with three computing nodes in the CG. There are two children generated from the
cross over. The child 1 retains the genes from the parent 1 at the bit positions where the masking
bit pattern is 1 and the genes from parent 2 where the masking bit pattern is 0. The child 2
retains the genes from the parent 1 at the bit positions where the masking bit pattern is 0 and the
genes from parent 2 where the masking bit pattern is 1.

Algorithm 1: Adapted Crossover
Input: parent 1, parent 2
Process:
1. Randomly create a bit string of 0’s and 1’s
2. If 𝑗𝑡ℎ location of the bit string is 1 then
3. Child 1 keep 𝑗𝑡ℎ location of parent 1
4. Child 2 keep 𝑗𝑡ℎ location of parent 2
5. else
6. Child 1 keep 𝑗𝑡ℎ location of parent 2
7. Child 2 keep 𝑗𝑡ℎh location of parent 1
8. endif
Output: child 1, child 2

Task
Number

1 2 3 4 5 6 7 8 9 10

Masking
bits

1 0 1 1 0 0 1 0 1 1

Parent 1 3 3 1 2 2 1 2 2 3 1
Parent 2 2 3 2 1 2 2 1 3 2 3
Child 1 3 3 1 2 2 2 2 3 3 1
Child 2 2 3 2 1 2 1 1 2 2 3

Fig. 2. Adapted crossover

3.2.3 Adapted Mutation
The Pseudo code of mutation operation adapted for MiE-AGA is given in Algorithm 2 [34]. To
make the process of adapted mutation more understandable, an example (cf. Fig. 3) is provided
for readers with three computing nodes in the CG. Randomly selects two gens and exchange the
positions in the mutated chromosome.

Algorithm 2: Adapted Mutation

Input: chromosome 1 and mutation probability
Process:
1. Randomly produce a number between 0 and 1
2. If mutation probability is less than the produced

 number
3. Randomly selects two gens from the

chromosome
4. Exchange the positions of the gens
5. else
6. No changes in the chromosome
7. endif
Output: chromosome 1’

Fig. 3. Adapted mutation

Task number 1 2 3 4 5 6 7 8 9 10
Chromosome 3 3 1 2 2 1 2 2 3 1
The mutated
chromosome

2 3 1 2 2 1 1 3 3 1

2828 Kaiwartya et al.: Minimizing Energy Consumption in Scheduling of Dependent Tasks using Genetic
Algorithm in Computational Grid

3.2.4 Adapted Inversion
The Pseudo code of inversion operation adapted for MiE-AGA is given in Algorithm 3. The size
of the group choosing for inversion depends on the stage of the optimization process. In initial
stages, the size is generally chosen larger whereas during the last stages of optimization smaller
size is preferred. To make the process of adapted inversion more understandable, an example is
provided for readers with three computing nodes in the CG. The size of the group is taken 3 and
the group of gens chosen for inversion is (1,2,2) in the example (cf. Fig. 4).

Algorithm 3: Adapted Inversion
Input: chromosome 1
Process:
1. Randomly choose a continuous group of gens
2. Reverse the positions of the group of gens
Output: chromosome 1’

Fig. 4. Adapted inversion

Task Number 1 2 3 4 5 6 7 8 9 10
Chromosome 1 3 3 1 2 2 1 2 2 3 1
Chromosome 1’ 3 3 1 2 2 2 2 1 3 1

3.2.5 Pseudo code of MiE-AGA
The Pseudo code for MiE-AGA is presented in this section using the above discussed operations
such as adapted crossover, mutation, and inversion. Initially, random solutions are generated for
each chromosome to produce initial population used in MiE-AGA. A self-explanatory Pseudo
code for MiE-AGA is given in algorithm 4.

Algorithm 4: MiE-AGA

Notations:𝑀: Number of nodes in the CG; 𝑇: Tasks to be allocated to nodes of the CG;
 𝜆: Task load range; 𝜇: Computing speed of nodes; 𝑅𝑡𝑠: Range of task size;
 𝑁𝑔𝑒𝑛: Number of generations; 𝑆𝑝𝑜𝑝: Size of the population considered for execution
Input: 𝑀,𝑇, 𝜆, 𝜇,𝑅𝑡𝑠, 𝑆𝑝𝑜𝑝,𝑁𝑔𝑒𝑛
Process:
1. Generate initial population of size 𝑆𝑝𝑜𝑝 by random task distribution and considering dependency
2. Calculate 𝑇𝐸𝑇𝑗of each the nodes using equation (7)
3. Calculate 𝑀𝑠𝑝𝑎𝑛of the CG using equation (11)
4. Calculate 𝑇𝑗𝑖𝑑𝑙𝑒of each the nodes using equation (12)
5. Calculate 𝐸𝑗 of each the nodes using equation (13)
6. Calculate 𝑇𝐸 of each chromosome using equation (14) which is the fitness
7. Calculate 𝑈𝑗 of each the nodes using equation (15)
8. Calculate 𝐴𝑈𝑖 of the CG using equation (16)
9. Arrange the population in descending order of the fitness
10. g=1
11. While (g<=𝑁𝑔𝑒𝑛)
12. Select the best half population using tournament selection approach known as parent population
13. p=0
14. While(p<=Spop)
15. Randomly select two chromosomes from the parent population
16. Perform crossover based on the probability of crossover to produce child chromosomes
17. p=p+2
18. Randomly choose chromosome from parent population

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 8, August 2015 2829

19. Mutate chromosome based on the probability of mutation to produce child chromosome
20. p=p+1
21. Randomly choose chromosome from parent population
22. Invert chromosome based on the probability of inversion to produce child chromosome
23. p=p+1
24. endwhile
25. Generate new population of size 2*Spop by mixing old population and child chromosomes
26. Calculate 𝑇𝐸𝑇𝑗of each nodes using equation (7)
27. Calculate 𝑀𝑠𝑝𝑎𝑛of the CG using equation (11)
28. Calculate 𝑇𝑗𝑖𝑑𝑙𝑒of each nodes using equation (12)
29. Calculate 𝐸𝑗of each the nodes using equation (13)
30. Calculate 𝑇𝐸 of each chromosome using (14) which is the fitness
31. Calculate 𝑈𝑗 of each nodes using equation (15)
32. Calculate 𝐴𝑈𝑖 of the CG using equation (16)
33. Arrange the new population in descending order of the fitness
34. Select the best half of the new population and replace with the old population
35. Store the schedule considering 𝑀𝑠𝑝𝑎𝑛, 𝑇𝐸 and 𝐴𝑈𝑖
36. endwhile
37. exit

Output: Schedule of final generation considering 𝑀𝑠𝑝𝑎𝑛, 𝑇𝐸 and 𝐴𝑈

4. Simulation and Analysis of Results
In this section, extensive simulation is performed to evaluate the performance of MiE-AGA. The
three metrics considered for performance evaluation are; energy consumption, makespan and
average utilization. The state-of-the-art algorithms used for comparative analysis are; EAMM,
HEFT, Min-Min and Max-Min.

Table 2. Parameter values and ranges used in Simulation

4.1 Simulation Environment
The simulation is designed by writing programs in Java using Eclipse IDE and integrating them
to GridSim simulator. Simulation environment uses a random generator with uniform
distribution. The values of the load, processing speed, task size and communication cost are
produced randomly between the given ranges. Task dependency graph also known as grid
workflow is generated based on the communication cost matrix. Frequencies and voltages of

Input Parameter Value Input Parameter Value
Number of nodes 3-188 Probability of applying crossover 0.7
Number of tasks 10-512 Probability of applying mutation 0.05
Range of load (λ) 1-100 MIPS Probability of applying inversion 0.01
Range of computing power (µ) 101-150 MIPS Population size 100
Range of task Size 2000-5000 MI Range of Lower Voltage 0-2 Volts
Range of Lower Frequency 0-2 MHz Range of Upper Voltage 1-3 Volts
Range of Upper Frequency 1-3 MHz Range of Communication cost 0-20

2830 Kaiwartya et al.: Minimizing Energy Consumption in Scheduling of Dependent Tasks using Genetic
Algorithm in Computational Grid

nodes in CG are also randomly generated within specified range. The ranges and value of
parameters used in the simulation are listed in the Table 2. All the values generated conform to
similar models for the same purpose. The simulator designed for the simulation has ten classes;
namely, random_generator.java, selection.java, crossover.java, mutation.java, inversion.java,
calculate_parameters.java, sort.java, global_scheduler.java, local_scheduler.java and Main.java.
The simulation is performed in a SUN FIRE X4470 Server @ 4 Intel Xeon 𝜇𝑃 7500 Series with
up to 512 GB of memory and over 1.8 TB of internal storage. The system is equipped with Sun
Studio software with Open MP and MPI programming models. The simulations are classified
into three categories small (3 to 64 nodes and 10 to 128 tasks), medium (65 to 128 nodes and
128 to 256 tasks) and large (129 to 188 nodes and 256 to 512 tasks) grid.

4.2 Analysis of Results with Small Grid Workflow
In this section, the optimization performance of MiE-AGA is analyzed.

Fig. 5. Optimization of energy consumption in
case of MiE-AGA with 128 tasks and 8 nodes

Fig. 6. Optimization of makespan in case of
MiE-AGA with 128 tasks and 8 nodes

 Table 3. Comparison of energy consumption in joule (J) with 128 tasks

 No of nodes

Algorithm

16 24 32 40 48 56 64

MiE-AGA 2199171 2653912 3567576 4150412 5003475 5739492 5962324

EAMM 2199330 2653966 3567688 4150788 5003596 5739610 5962457

HEFT 2199590 2653976 3567925 4151011 5003937 5739749 5962636

Min-Min 2199661 2654241 3568058 4151371 5003984 5740145 5962852

Max-Min 2200060 2654356 3568223 4151557 5004290 5740472 5962992

100 200 300 400 500
1.5

2

2.5

3

3.5

4
x 10

6

Generation [N]

E
ne

rg
y

[J
]

100 200 300 400 500
0.9

1

1.1

1.2

1.3
x 10

5

Generation [N]

M
ak

es
pa

n
[s

]

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 8, August 2015 2831

Result in Fig. 5 shows the optimization of energy consumption of nodes in case of MiE-AGA
with increasing number of generations. It can be clearly observed that energy consumption of
nodes in the CG decreases with increasing number of generations up to around 251 generations.
The optimization converges completely reaching to 500 generations and minimum consumed
energy is approximately 1551870 𝐽 . This can be attributed to the fact that MiE-AGA considers
energy consumption of nodes while scheduling of tasks in CG. Result in Fig. 6 shows the
optimization of Makespan of CG in case of MiE-AGA with increasing number of generations. It
can be clearly observed that makespan of nodes in the CG decreases with increasing number of
generations up to around 500 generations. The optimization converges completely reaching to
above 500 generations and minimum makespan is approximately 98994 𝑠 . This can be
attributed to the fact that MiE-AGA considers dependency of task while scheduling of tasks in
CG.

Results in Table 3 show the comparison of energy consumption of nodes between MiE-AGA
and state-of-the-arts algorithms. The comparative analysis clearly shows that MiE-AGA has
lower energy consumption as compared to the state-of-the-arts techniques for each of the
number of nodes considered in the results. This is due to the consideration of energy
consumption while scheduling of tasks in case of MiE-AGA .Additionally, it is also noteworthy
that energy consumption of nodes increases with increasing number of nodes in CG for each of
the algorithms considered but the increment in energy consumption is smaller in case of MiE-
AGA as compared to the state-of-the-arts algorithms.

Table 4. Comparison of makespan in second (s) with 128 tasks

 No of nodes

Algorithm

16 24 32 40 48 56 64

MiE-AGA 79362.5 63345 55037.4 51558.9 41017.0 29372.9 24420.8
HEFT 79703.5 63446.6 55275.2 51612.2 41054.7 29540.3 24517.3

Min-Min 79743.1 63491.3 55308.3 51647.5 41105.8 29622.1 24596.7
Max-Min 79918 63572.5 55378.7 51867.9 41199.7 29709.7 24651.8
EAMM 80462.4 63583.8 56581.6 51967.2 41235.6 29752.8 24719.5

Results in Table 4 show the comparison of makespan of CG between MiE-AGA and state-

of-the-arts algorithms. The comparative analysis clearly shows that MiE-AGA has lower
makespan as compared to the state-of-the-arts algorithms for each of the number of nodes
considered in the results. This is due to the consideration of dependency of tasks while
scheduling of tasks in case of MiE-AGA. Additionally, it is also noteworthy that makespan of
CG increases with increasing number of nodes in CG for each of the algorithms considered but
the increment in makespan is smaller in case of MiE-AGA as compared to the state-of-the-arts
algorithms.

2832 Kaiwartya et al.: Minimizing Energy Consumption in Scheduling of Dependent Tasks using Genetic
Algorithm in Computational Grid

Table 5. Average utilization in case of MiE-AGA

 No of nodes

No of tasks

16 24 32 40 48 56 64

128 0.3264 0.2908 0.2814 0.2214 0.2049 0.1296 0.0828
256 0.4538 0.4042 0.3911 0.3078 0.2848 0.1802 0.1151

Results in Table 5 show the average utilization in case of MiE-AGA for 128 and 256 tasks
with increasing number of nodes in CG. It can be clearly observed that average utilization
decreases with increasing number of nodes in CG and increases with increasing number of tasks
in CG. This can be attributed to the fact that MiE-AGA considers utilization of nodes while
scheduling of tasks in CG.

4.3 Analysis of Results with Medium Grid Workflow
Experiment has been performed for the medium grid workflow with various possibilities.
Next experiment takes the observation on energy and makespan considering 72 nodes and 256
tasks. Results are shown in Fig. 7 and Fig. 8.

Fig. 7. Optimization of energy consumption in case
of MiE-AGA with 256 tasks and 72 nodes

Fig. 8. Optimization of makespan in case of MiE-
AGA with 256 tasks and 72 nodes

 Table 6. Comparison of energy consumption in joule (J) with 256 tasks

 No of nodes

Algorithm 80 88 96 104 112 120 128
MiE-AGA 10175152 11179921 11477518 11673336 11853757.8 12489556 12724188

EAMM 10175496 11180631 11477831 11673951 11859864.2 12490203 12724792
HEFT 10175669 11181264 11478590 11674213 11860465.6 12490554 12725459

Min-Min 10175803 11181953 11479382 11674625 11866324.5 12491024 12725583
Max-Min 10176128 11182552 11480043 11675257 11871008.3 12491451 12725655

1 401 801 1,201 1,601 2,000
0

1

2

3

4

5

6

7
x 10

7

Generation [N]

E
ne

rg
y

[J
]

500 1000 1500 2000
0.5

1.5

2.5

3.5

44
x 10

5

Generation [N]

M
ak

es
pa

n
[s

]

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 8, August 2015 2833

Result in Fig. 7 shows the optimization of energy consumption of nodes in case of MiE-AGA
with increasing number of generations. It can be clearly observed that energy consumption of
nodes in the CG decreases with increasing number of generations up to around 1900 generations.
The optimization converges completely reaching to 2000 generations and minimum consumed
energy is approximately MiE-AGA is 9707300 𝐽. This can be attributed to the fact that MiE-
AGA considers energy consumption of nodes while scheduling of tasks in CG. Fig. 8 shows the
optimization of Makespan of CG in case of MiE-AGA with increasing number of generations. It
can be clearly observed that makespan of nodes in the CG decreases with increasing number of
generations up to around 1950 generations. The optimization converges completely reaching to
above 2000 generations and minimum makespan with proposed MiE-AGA is 99134.3 𝑠. This
can be attributed to the fact that MiE-AGA considers dependency of task while scheduling of
tasks in CG.

A comparative study, of the proposed model with other models, has been performed to
observe energy. Results in Table 6 show the comparison of energy consumption of nodes
between MiE-AGA and state-of-the-arts algorithms. The comparative analysis clearly shows that
MiE-AGA has lower energy consumption as compared to the state-of-the-arts techniques for
each of the number of nodes considered in the results. This is due to the consideration of energy
consumption while scheduling of tasks in case of MiE-AGA .Additionally, it is also noteworthy
that energy consumption of nodes increases with increasing number of nodes in CG for each of
the algorithms considered but the increment in energy consumption is smaller in case of MiE-
AGA as compared to the state-of-the-arts algorithms.

 Table 7. Comparison of makespan in second (s) with 256 tasks

No of nodes
Algorithm 80 88 96 104 112 120 128
MiE-AGA 104125.6 94125.6 70336.7 62967.1 54739.6 48978.2 46166.5

HEFT 104217.1 94217.1 70739.4 63074.8 54872.3 48998.6 46196.7
Min-Min 104260.7 94260.7 70956.2 63105.4 54923.2 49089.1 46221.5
Max-Min 104298.6 94298.6 71178.2 63158.7 54958.2 49191.4 46305.2
EAMM 104304.2 94304.2 71426.5 63174.9 54985.4 49298.8 46540.4

From Table 7, it is observed that when number of nodes increases, makespan decreases. The

proposed MiE-AGA is performing better than other models. Results in Table 7 show the
comparison of makespan of CG between MiE-AGA and state-of-the-arts algorithms. The
comparative analysis clearly shows that MiE-AGA has lower makespan as compared to the
state-of-the-arts algorithms for each of the number of nodes considered in the results. This is due
to the consideration of dependency of tasks while scheduling of tasks in case of MiE-AGA.
Additionally, it is also noteworthy that makespan of CG increases with increasing number of
nodes in CG for each of the algorithms considered but the increment in makespan is smaller in
case of MiE-AGA as compared to the state-of-the-arts algorithms.

2834 Kaiwartya et al.: Minimizing Energy Consumption in Scheduling of Dependent Tasks using Genetic
Algorithm in Computational Grid

 Table 8. Average utilization in case of MiE-AGA with 256 tasks
Nodes 80 88 96 104 112 120 128

MiE-AGA 0.137081 0.117574 0.10602 0.075709 0.056212 0.045877 0.041787

Results in Table 8 show the average utilization in case of MiE-AGA for 128 and 256 tasks
with increasing number of nodes in CG. It can be clearly observed that average utilization
decreases with increasing number of nodes in CG and increases with increasing number of tasks
in CG. This can be attributed to the fact that MiE-AGA considers utilization of nodes while
scheduling of tasks in CG.

4.4 Analysis of Results with Large Grid Workflow
For the large grid workflow, experiment has been performed with various possibilities.
This experiment takes the observation on energy and makespan. Makespan is obtained
considering 180 nodes and 512 tasks whereas energy is obtained considering 136 nodes and 512
tasks. It is because; on less number of nodes energy was not quite observable. Results are shown
in Fig. 9 and Fig. 10.

Fig. 9. Optimization of energy consumption in
case of MiE-AGA with 512 tasks and 136 nodes

Fig. 10. Optimization of makespan in case of
MiE-AGA with 512 tasks and 136 nodes

Result in Fig. 9 shows the optimization of energy consumption of nodes in case of MiE-AGA
with increasing number of generations. It can be clearly observed that energy consumption of
nodes in the CG decreases with increasing number of generations up to around 4951 generations.
The optimization converges completely reaching to 5000 generations and minimum consumed
energy is approximately using MiE-AGA is 25517663 𝐽. This can be attributed to the fact that
MiE-AGA considers energy consumption of nodes while scheduling of tasks in CG. Result in
Fig. 10 shows the optimization of Makespan of CG in case of MiE-AGA with increasing number
of generations. It can be clearly observed that makespan of nodes in the CG decreases with
increasing number of generations up to around 4950 generations. The optimization converges
completely reaching to above 5000 generations and minimum makespan using MiE-AGA is

1000 2000 3000 4000 5000
2

3

4

5

6

7

8

9
x 10

7

E
ne

rg
y

[J
]

Generation[N]

1000 2000 3000 4000 5000
1

2

3

4

5
x 10

5

Generation [N]

M
a
k
e
s
p
a
n
[s

]

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 8, August 2015 2835

125925.90 𝑠 . This can be attributed to the fact that MiE-AGA considers dependency of task
while scheduling of tasks in CG.

Table 9. Comparison of energy consumption in joule (J) with 512 tasks

No of nodes
Algorithm 136 144 152 160 168 172

MiE-AGA 25517663 29761492 32421212 35778018 39835972 42835915
EAMM 25518958 29762850 32422484 35779908 39836342 42836333
HEFT 25519875 29764174 32424024 35780608 39837661 42837657

Min-Min 25521040 29765255 32425764 35781138 39838297 42838293
Max-Min 25522129 29766550 32426852 35782580 39839339 42839338

From Table 9 it is clear that energy increased when number of nodes increased. Again, MiE-

AGA is performing better than other models. A comparative study, of the proposed model with
other models, has been performed to observe energy. Results in Table 9 show the comparison of
energy consumption of nodes between MiE-AGA and state-of-the-arts algorithms. The
comparative analysis clearly shows that MiE-AGA has lower energy consumption as compared
to the state-of-the-arts techniques for each of the number of nodes considered in the results. This
is due to the consideration of energy consumption while scheduling of tasks in case of MiE-
AGA .Additionally, it is also noteworthy that energy consumption of nodes increases with
increasing number of nodes in CG for each of the algorithms considered but the increment in
energy consumption is smaller in case of MiE-AGA as compared to the state-of-the-arts
algorithms.

Table 10. Comparison of makespan in second (s) with 512 tasks

No of nodes
Algorithm 136 144 152 160 168 172

MiE-AGA 245606.5 205031.1 180540.1 119378.8 109926.9 101092.9
HEFT 245936.8 205193.8 180807.5 119767 110373.6 101470

Min-Min 246041.1 205238.8 180983.3 119845.6 110386.9 101696.4
Max-Min 246262 205357.2 181188.3 120056.8 110519.6 101702.3
EAMM 246384.5 205431.6 181265.8 120209.2 110689.5 101817.4

A Comparative study, of the proposed model with other models, has been performed to

observe the makespan using 136 nodes to 172 nodes and 512 tasks. Results in Table 10 show
the comparison of makespan of CG between MiE-AGA and state-of-the-arts algorithms. The
comparative analysis clearly shows that MiE-AGA has lower makespan as compared to the
state-of-the-arts algorithms for each of the number of nodes considered in the results. This is due
to the consideration of dependency of tasks while scheduling of tasks in case of MiE-AGA.
Additionally, it is also noteworthy that makespan of CG increases with increasing number of
nodes in CG for each of the algorithms considered but the increment in makespan is smaller in
case of MiE-AGA as compared to the state-of-the-arts algorithms.

2836 Kaiwartya et al.: Minimizing Energy Consumption in Scheduling of Dependent Tasks using Genetic
Algorithm in Computational Grid

Table 11. Average utilization in case of MiE-AGA with 512 tasks

Nodes 136 144 152 160 168 172
MiE-AGA 0.103677 0.090216 0.086225 0.069408 0.065974 0.060106

Results in Table 11 show the average utilization in case of MiE-AGA for 128 and 256 tasks

with increasing number of nodes in CG. It can be clearly observed that average utilization
decreases with increasing number of nodes in CG and increases with increasing number of tasks
in CG. This can be attributed to the fact that MiE-AGA considers utilization of nodes while
scheduling of tasks in CG.

5. Conclusion and Future Work
In this paper, a scheduling technique for Minimizing Energy consumption using Adapted
Genetic Algorithm (MiE-AGA) for dependent tasks in computational grid has been proposed
and simulated in Java based programs integrated with GridSim. From the analysis of simulation
results obtained with small, medium and large scal grid, following conclusions have been made.
MiE-AGA effectively minimizes energy consumption and makespan with increasing number of
generations. Energy consumption converges with 300, 2000 and 5000 generations for small,
medium and large scale grid respectively. Makespan converges with 500 , 1300 , 5000
generations for small, medium and large scale grid respectively. Average resource utilization
increases with increasing number of tasks and decreases with increasing number of nodes. The
minimum energy consumption observed are 1551870 𝐽, 9707300 𝐽 and 25517663 𝐽 for small,
medium and large scale grid respectively. The minimum makespan observed are 99134.3 𝑠,
125925.90 𝑠 and 98994 𝑠 for small, medium and large scale grid respectively. Energy
consumption and makespan of MiE-AGA are lower as compared to the state-of-the-arts
algorithms for all the scales of the grid considered. In future research, authors will explore multi-
objective meta-heuristics techniques for energy consumption with other QoS parameter
optimization.

Acknowledgements
The research is supported by Ministry of Education Malaysia (MOE) and conducted in
collaboration with Research Management Center (RMC) at University Teknologi Malaysia
(UTM) under VOT NUMBER: Q.J130000.2528.06H00.

Conflict of Interest
The authors declare that there is no conflict of interests regarding the publication of this paper.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 8, August 2015 2837

Authors’ Contribution

Omprakash Kaiwartya and Shiv Prakash conceived designed and experimental study of the work.
The paper is written by Omprakash Kaiwartya with the help of Shiv Prakash and Ahmed Nazar
Hassan. The written English of the paper has been improved by Abdul Hanan Abdulla.

References
[1] I. Foster, C. Kesselman, "Grid 2: Blueprint for a new computing infrastructure,” Morgan Kaufmann,

An Imprint of Elsevier, 2004. Article (CrossRef Link)
[2] F. Berman, A.J.G. Hey, G.C. Fox, “Grid computing: Making the global infrastructure a reality,” John

Wiley and Sons, 2003. Article (CrossRef Link)
[3] S. Nesmachnow, B. Dorronsoro, J. Pecero, P. Bouvry, “Energy-aware scheduling on multicore

heterogeneous grid computing systems,” Journal of Grid Computing, vol. 11, no. 4, pp. 653-680, 2013.
Article (CrossRef Link)

[4] W. Wang, S. Ranka, P. Mishra, “Energy-aware dynamic slack allocation for real-time multitasking
systems,” Sustainable Computing: Informatics and Systems, vol. 2, no. 3, pp. 128-137, 2012.
Article (CrossRef Link)

[5] R. Buyya, M. Murshed, “GridSim: A toolkit for the modeling and simulation of distributed resource
management and scheduling for grid computing,” Concurrency Computation: Practice and Experience,
vol. 14, no. 13-15, pp. 1175-1220, 2002. Article (CrossRef Link)

[6] D. Ding, S. Luo, Z. Gao, “A matrix scheduling strategy with multi QoS constraints in grid,” Lecture
Notes in Computer Science, 6104, pp. 59-68, 2010. Article (CrossRef Link)

[7] M.R. Garey, D.S. Johnson, “Computers and intractability: A guide to the theory of NP-completeness,”
W.H. Freeman and Co., 1990. Article (CrossRef Link)

[8] R. Kashyap, D.P. Vidyarthi, “Security driven scheduling model for computational grid using NSGA II,”
Journal of Grid Computing, vol. 11, no. 4, pp.721-734, 2013. Article (CrossRef Link)

[9] S. Prakash, D.P. Vidyarthi, “A novel scheduling model for computational grid using quantum genetic
algorithm,” Journal of Supercomputing, vol. 65, no. 4, pp. 745-764, 2013. Article (CrossRef Link)

[10] S. Parsa, R. Entezari-Maleki, “Task dispatching approach to reduce the number of waiting tasks in
grid environments,” Journal of Supercomputing, vol. 59, no. 1, pp. 469-484, 2012.
Article (CrossRef Link)

[11] A. Rajni, I. Chana, Formal “QoS policy based grid resource provisioning framework,” Journal of
Grid Computing, vol. 10, no. 2, pp. 249-264, 2012. Article (CrossRef Link)

[12] F. Xhafa, A. Abraham, “Computational models and heuristic methods for grid scheduling problems,”
Future Generation Computer System, vol. 26, no. 4, pp. 608-621, 2010. Article (CrossRef Link)

[13] W.N. Chen, J. Zhang, “An Ant Colony Optimization Approach to a Grid Workflow Scheduling
Problem with various QoS Requirements,” IEEE Transaction on Systems, Man, and Cybernetics-Part
C: Applications and Reviews, vol. 39, no. 1, pp. 29-43, 2009. Article (CrossRef Link)

[14] S. Prakash, D.P. Vidyarthi, “Observations on effect of IPC in GA based scheduling on computational
grid,” Int. J. of Grid and High Performance Computing, vol. 4, no. 1, pp. 67-80, 2012.
Article (CrossRef Link)

[15] S. Prakash, D.P. Vidyarthi, “Load balancing in computational grid using genetic algorithm,”
International Journal of Advances in Computer, vol. 1, no. 1, pp. 8-17, 2011. Article (CrossRef Link)

[16] R. Subrata, A. Y. Zomaya, B. Landfeldt, “Artificial life techniques for load balancing in
computational grids,” J. of Com. and Sys. Sci., vol. 73, no. 8, pp. 1176-1190, 2007.
Article (CrossRef Link)

http://dl.acm.org/citation.cfm?id=996313
http://dx.doi.org/10.1002/0470867167
http://dx.doi.org/10.1007/s10723-013-9258-3
http://dx.doi.org/10.1016/j.suscom.2012.04.001
http://dx.doi.org/10.1002/cpe.710
http://dx.doi.org/10.1007/978-3-642-13067-0_10
http://dl.acm.org/citation.cfm?id=574848
http://dx.doi.org/10.1007/s10723-013-9251-x
http://dx.doi.org/10.1007/s11227-012-0864-9
http://dx.doi.org/10.1007/s11227-010-0448-5
http://dx.doi.org/10.1007/s10723-012-9202-y
http://dx.doi.org/10.1016/j.future.2009.11.005
http://dx.doi.org/10.1109/TSMCC.2008.2001722
http://dx.doi.org/10.4018/jghpc.2012010105
http://dx.doi.org/10.5923/j.ac.20110101.02
http://dx.doi.org/10.1016/j.jcss.2007.02.006

2838 Kaiwartya et al.: Minimizing Energy Consumption in Scheduling of Dependent Tasks using Genetic
Algorithm in Computational Grid

[17] R. Kashyap, D.P. Vidyarthi, “Security-aware scheduling model for computational grid,” Concurrency
Computation: Practice and Experience, vol. 24, no. 12, pp. 1377-1391, 2012. Article (CrossRef Link)

[18] I. Koren, C.M. Krishna, “Fault-tolerant System,” Morgan Kaufmann an imprint of Elsevier, 2007.
Article (CrossRef Link)

[19] D. Allenotor, R.K. Thulasiram, “A fuzzy grid-QoS framework for obtaining higher grid resources
availability,” Journal of Supercomputing, vol. 66, no. 3, pp. 1231-1242, 2013. Article (CrossRef Link)

[20] S. Prakash, D.P. Vidyarthi, “Maximizing availability for task scheduling in computational grid using
GA,” Concurrency Computation: Practice and Experience, vol. 27, no. 1, pp. 197-210, 2015.
Article (CrossRef Link)

[21] Susmita Singh, Madhulina Sarkar, Sarbani Roy, Nandini Mukherjee, “Genetic Algorithm based
Resource Broker for Computational Grid,” Procedia Technology, vol. 10, no. 1, pp. 572-580, 2013.

 Article (CrossRef Link)
[22] J. Carretero, F. Xhafa, L. Barolli, A. Durresi, “Immediate mode scheduling in grid systems,” Journal

of Web and Grid Services, vol. 3, no. 2, pp. 219-236, 2007. Article (CrossRef Link)
[23] F. Xhafa, J. Kolodziej, L. Barolli, V. Kolici, R. Miho, M. Takizawa, “Hybrid algorithms for

independent batch scheduling in grids,” Journal of Web and Grid Services, vol. 8, no. 2, pp. 134-152,
2012. Article (CrossRef Link)

[24] S. Prakash and D.P. Vidyarthi, “Immune Genetic Algorithm for Scheduling in Computational Grid,”
Journal of Bio-Inspired Computing, vol. 6, no. 6, pp. 397-408, 2014. Article (CrossRef Link)

[25] S. Prakash and D. P. Vidyarthi “A Hybrid GABFO Approach for Scheduling in Computational Grid,”
Int. Journal of Applied Evolutionary Computation, vol. 5, no. 3, pp. 57-83, 2014.
Article (CrossRef Link)

[26] M. Meddeber, B. Yagoubi, “Tasks assignment for Grid computing,” Journal of Web and Grid
Services, vol. 7, no. 4, pp. 427-443, 2011. Article (CrossRef Link)

[27] J. Kolodziej, S. U. Khan, L. Wang, D. Chen, and A. Y. Zomaya, “Energy and Security Awareness in
Evolutionary-driven Grid Scheduling,” Evolutionary based Solutions for Green Computing, 2013.
Article (CrossRef Link)

[28] F. Xhafa, A. Abraham, “Metaheuristics for scheduling in distributed computing environments studies,”
computational intelligence, Springer 146, pp. 1-37, 2008. Article (CrossRef Link)

[29] W. Wang, S. Ranka, P. Mishra, “Energy-aware dynamic reconfiguration algorithms for real-time
multitasking systems,” Sustainable Computing: Informatics and Systems, vol. 1, no. 1, pp. 35-45, 2011.
Article (CrossRef Link)

[30] E. Bampis, C. Dürra, F. Kacem, I. Mills, “Speed scaling with power down scheduling for agreeable
deadlines, systems,” Sustainable Computing: Informatics and Systems, vol. 2, no. 4, pp. 184-189, 2012.
Article (CrossRef Link)

[31] T.D. Braun, H.J. Sigel, N. Beck, “A comparison of eleven static heuristic for mapping a class of
independent tasks onto heterogeneous distributed computing systems,” Journal Parallel and
Distributed Computing, vol. 61, no. 6, pp. 810-837, 2001. Article (CrossRef Link)

[32] Z. Shi, J. Dongarra, “Scheduling workflow applications on processors with different capabilities,”
Future Generation Computer System, vol. 22, no. 6, pp. 665-675, 2006. Article (CrossRef Link)

[33] Levy, Y. “Introduction to queueing theory,” Elsevier North Holland, Networks, vol. 13, no. 1,
pp. 155-156, 1981. Article (CrossRef Link)

[34] D.E. Goldberg, “Genetic algorithms in search optimization and machine learning,” 3rd edition,
Pearson Education India, 2005. Article (CrossRef Link)

http://dx.doi.org/10.1002/cpe.1850
http://www.elsevier.com/books/fault-tolerant-systems/koren/978-0-12-088525-1
http://dx.doi.org/10.1007/s11227-011-0728-8
http://dx.doi.org/10.1002/cpe.3216
http://dx.doi.org/10.1016/j.protcy.2013.12.397
http://dx.doi.org/10.1504/IJWGS.2007.014075
http://dx.doi.org/10.1504/IJWGS.2012.048402
http://dx.doi.org/10.1504/IJBIC.2014.066970
http://dx.doi.org/10.4018/ijaec.2014070104
http://dx.doi.org/10.1504/IJWGS.2011.044697
http://dx.doi.org/10.1007/978-3-642-30659-4_4
http://dx.doi.org/10.1007/978-3-540-69277-5
http://dx.doi.org/10.1016/j.suscom.2010.10.006
http://dx.doi.org/10.1016%2Fj.suscom.2012.10.003
http://dx.doi.org/10.1006/jpdc.2000.1714
http://dx.doi.org/10.1016/j.future.2005.11.002
http://dx.doi.org/10.1002/net.3230130112
http://dl.acm.org/citation.cfm?id=534133

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 8, August 2015 2839

Omprakash Kaiwartya received his M.Tech and PhD in Computer Science from School of
Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi, India in 2012 and
2015. He is currently working as a Post-Doctoral Faculty at Universiti Teknologi Malaysia
(UTM). His research interests include VANETs, MANETs, WSNs and Computing. He has
published papers in reputed Journals and Conferences including ACM, IEEE, Springer, MDPI,
Inderscience and Hindawi.

Shiv Prakash received his M.Tech and PhD in Computer Science from School of Computer
and System Sciences, Jawaharlal Nehru University, New Delhi, India in 2010 and 2014. He is a
member of the IEEE and ACM. His research interest includes parallel/distributed system, grid
computing, cloud Computing, Machine Learning. He has published around papers in various
international journals and peer-reviewed Conferences including IEEE, Springer, Wiley & Sons
and Inderscience.

Abdul Hanan Abdullah received his Ph.D. degree from Aston University in Birmingham,
United Kingdom in 1995. He is currently working as a Professor at Universiti Teknologi
Malaysia (UTM). He was the dean at the Faculty of Computing, UTM from 2004 to 2011.
Currently he is heading Pervasive Computing Research Group, a research group under K-
Economy Research Alliances. Prof. Abdullah has published papers in reputed Journals and
Conferences including IEEE, Elsevier, Wiley & Sons, Springer, MDPI and Hindawi.

Ahmed Nazar Hassan is currently a Ph.D. research scholar at Faculty of Computing
Universiti Teknologi Malaysia(UTM), Skudai Johor, Malaysia. His research interest includes
VANETs, MANETs, WSNs and Computing. He has published papers in reputed Journals
including MDPI and Hindawi.

