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Abstract 

 
Energy consumption by large computing systems has become an important research theme not 
only because the sources of energy are depleting fast but also due to the environmental concern. 
Computational grid is a huge distributed computing platform for the applications that require 
high end computing resources and consume enormous energy to facilitate execution of jobs. The 
organizations which are offering services for high end computation, are more cautious about 
energy consumption and taking utmost steps for saving energy. Therefore, this paper proposes a 
scheduling technique for Minimizing Energy consumption using Adapted Genetic Algorithm 
(MiE-AGA) for dependent tasks in Computational Grid (CG). In MiE-AGA, fitness function 
formulation for energy consumption has been mathematically formulated. An adapted genetic 
algorithm has been developed for minimizing energy consumption with appropriate 
modifications in each components of original genetic algorithm such as representation of 
chromosome, crossover, mutation and inversion operations. Pseudo code for MiE-AGA and its 
components has been developed with appropriate examples. MiE-AGA is simulated using Java 
based programs integrated with GridSim. Analysis of simulation results in terms of energy 
consumption, makespan and average utilization of resources clearly reveals that MiE-AGA 
effectively optimizes energy, makespan and average utilization of resources in CG. Comparative 
analysis of the optimization performance between MiE-AGA and the state-of-the-arts algorithms: 
EAMM, HEFT, Min-Min and Max-Min shows the effectiveness of the model.      
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1. Introduction 

Computational Grid (CG) is a hardware and software infrastructure that is geographically 
distributed and connected via high speed communication networks which provides highly 
satisfactory computing resources to the grid users [1]. One of the prime goal of CG is to fulfill 
the different computing requirement of jobs submitted by the grid users [2]. Recently, 
optimizing electrical energy consumption in high end computing resources has witnessed a 
significant research attention which is aimed at to keep the environment green [3]. This can be 
attributed to the fact that it not only depletes the resources of energy but also a case of concern 
considering environment and cost. In order to save electrical energy in CG, tasks are migrated 
from lightly loaded nodes to average loaded nodes so that the lightly loaded nodes can be 
switched off [4]. High end computing resources requires more electrical energy and therefore, 
there is a tradeoff between computing power and electrical energy. From the hardware point of 
view, energy saving is being addressed by the researchers and it is believed that with the 
advancement in technology modern computing resources will offer better computational power 
using less amount of electrical energy. From the software point of view, the design of the 
software system should be energy efficient. This work deals with the design of grid scheduler to 
meet the energy requirement of grid efficiently. It considers dependency of tasks of a job 
forming a directed acyclic graph. Dependent tasks submitted to CG form a grid workflow. 
Generally, grid workflow has two types of schedulers; namely, global scheduler and local 
scheduler. Global scheduler is responsible to fulfill the requirements of the users by distributing 
the jobs to various nodes of the grid [5, 6]. Local scheduler handles local scheduling policy on 
the nodes of grid. Workflow scheduling problem in computational grid, has been noted to be an 
NP-Hard problem due to various constraints involved [7]. Therefore, energy based grid 
workflow scheduling is of prime concern that has been addressed in this work. 

Faster nodes takes lesser time for execution but they consume higher electrical energy. 
Therefore, in energy-aware scheduling, job allocation to a grid is done in a manner that 
minimizes energy consumption. It has been observed that meta-heuristic techniques are very 
useful for such optimization problems [8]. Therefore, this paper uses a meta-heuristic: GA to 
propose an energy-aware scheduling model for grid workflow. The rest of the paper is organized 
as follows. In section 2, related literatures are reviewed with pros and cons of each research 
article considered. In section 3, energy consumption in CG is mathematically formulated as an 
optimization problem and an adapted genetic algorithm is proposed to solve the optimization 
problem. In section 4, simulation and analysis of results are discussed. In section 5, conclusion 
and future research direction of the work is presented.   

2. Related Work 
Makespan, turnaround time, energy, reliability, resource availability etc. are some of the 
important characteristic parameters often optimized by scheduling the jobs appropriately on grid 
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nodes. The grid scheduling problem has been extensively discussed in literature [9-11]. GA is 
often used to address the scheduling problem in grid, as the problem is NP-Hard [12, 13]. 

To study the effect of Inter Process Communication (IPC) in task scheduling, GA is used 
[14]. Load balancing that considers load distribution and load variation on grid nodes, using GA 
has been elaborated in [15, 16]. Another important parameter, security, also finds place in many 
research works. Security aware scheduling using GA in CG is discussed in [17] focusing on 
security optimization. Availability is discussed in [18, 19] that demonstrate the availability 
metric. Maximization of availability for task scheduling problem in CG using GA is suggested in 
[20]. Makespan minimization in CG has been discussed in [21-25]. Dependent task scheduling 
in grid computing is discussed in [26].  

The above discussed works clearly indicate that GA has been widely used for workflow 
scheduling in grid. This also points out that energy optimization are rarely considered for 
workflow scheduling in grid, which is the prime objective of the proposed work. In [27], energy 
aware scheduling for independent tasks using GA is discussed. In [28], Dynamic voltage 
frequency scaling (DVFS) is used which is an effective technique for processor energy reduction. 
It adjusts processor voltage and frequency level during runtime. In [29], system optimization 
procedures constructed on dynamic reconfiguration are broadly implemented for energy 
conservation. DVFS techniques have been extensively studied for processor energy conservation 
in this paper. A general and flexible model for energy minimization based on reconfiguration 
dynamics in multitasking systems is proposed. In [30] scheduling problem on a single processor 
for a given set of jobs is discussed. Further, processor can vary its speed and hibernate to reduce 
energy consumption. Therefore the schedule minimizes the overall consumed energy.  

In MIN-MIN scheduling, tasks are assigned based on the completion time of a grid workflow. 
Heterogeneous Earliest Time First (HEFT) algorithm assigns higher priority to the unallocated 
independent tasks in the grid workflow. Rank calculation is based on the expected time for each 
task and communication cost of two successive tasks. Task having maximum rank is assigned 
higher priority. The tasks are scheduled based on their priorities. The readers are advised to refer 
to the article in [31] for details of MIN-MIN, MAX-MIN and HEFT. Energy Aware Max-Min 
(EAMM) [32] is a variant of Max-Min which considers energy in the first phase and completion 
time in the second phase. In each iteration it selects the pairs (task, node) that minimizes the 
energy consumption for each task in phase 1 then it selects the pair that maximizes the 
completion time in phase 2.  The aforementioned models do not consider dependency of tasks in 
scheduling.  

3. MiE-AGA 
A computation grid having 𝑀 computational nodes is assumed for the problem formulation. The 
grid workflow scheduling problem is considered equivalent to the mapping of tasks to nodes of 
the grid with the objective of minimization of energy consumption. It is also assumed that all 
parent tasks finish their execution before the execution of the exit task. Grid users submit their 
jobs to the grid and each job consists of number of tasks. A queue of jobs waiting to be assigned 
to the nodes of the grid is considered. The length of the queue depends on the arrival and 
departure rate of jobs which follows Poisson distribution and execution time of task follows 
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exponential distribution [33]. Task scheduling of a node in CG (local scheduling) follows 
M/M/1 model whereas Task scheduling in all nodes in CG (global scheduling) follows M/M/S 
model. All the tasks submitted to CG are partially dependent and parallel in nature. The average 
load and service rate at 𝑗𝑡ℎnode are 𝜆𝑗 and 𝜇𝑗 respectively and 𝜇𝑗 > 𝜆𝑗. Average waiting time at 
𝑗𝑡ℎ node using M/M/S model is given by Equation (1). 

𝜆𝑗
𝜇𝑗�𝜇𝑗−𝜆𝑗�

           (1) 

The service average time at 𝑗𝑡ℎnode is 1/𝜇𝑗. The execution time 𝐸𝑇𝐶𝑖,𝑗for computation of 𝑖𝑡ℎ task 
on 𝑗𝑡ℎ  node can be expressed as given in Equation (2). 

𝐸𝑇𝐶𝑖,𝑗 = ∑ ��
𝜆𝑗

𝜇𝑗�𝜇𝑗−𝜆𝑗�
+ 1

𝜇𝑗
� × 𝛿𝑖,𝑗 × 𝑁𝑜𝐼𝑖�

𝑛𝑗
𝑡𝑎𝑠𝑘

𝑖=1       (2) 

𝛿𝑖,𝑗 = �1,   𝑖𝑓 𝑖𝑡ℎ task is alloted to 𝑗𝑡ℎ node 
0,                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

       (3) 

Where, 𝑛𝑗𝑡𝑎𝑠𝑘represents the number of tasks allotted to 𝑗𝑡ℎ node, 𝛿𝑖,𝑗  is the binary parameter 
and  
𝑁𝑜𝐼𝑖   represents the number of instructions in 𝑖𝑡ℎ  task. The notations used throughout in this 
research article are listed in Table 1 with their purpose of usage. 

 
Table 1. Notation Table 

Notation Meaning Notation Meaning 
𝑖 Subscript for task 𝑇𝑗𝑖𝑑𝑙𝑒  Idle time  
𝑗 𝑜𝑟 𝑘 Subscript for node 𝑀𝑠𝑝𝑎𝑛 Makespan of a CG 
𝑙 Subscript for solution path 𝜆𝑗  Average load  
𝑛 Number of tasks in grid workflow  𝜇𝑗 Average service rate  
𝑀 Number of nodes in grid 𝑉𝑗𝑚𝑎𝑥 Maximum voltage  
𝛿𝑖,𝑗 Presence/absence of task on node  𝑉𝑗𝑚𝑖𝑛 Minimum voltage  
𝑁𝑜𝐼𝑖  Number of instructions  𝑇𝑖  Task of grid workflow 
𝐴𝑁𝐶𝑖 Set of ancestors 𝑆𝑒 Set of empty nodes 
𝐷𝐸𝑆𝑖  Set of descendants  𝑆𝑛𝑒 Set of non-empty nodes 
𝐷𝑉𝐹𝑆 Dynamic Voltage Frequency Scaling  𝛾 DVFS Constant 
𝐸𝑇𝐶𝑖,𝑗 Execution time for computation  𝐻𝐹𝑗 Highest frequency  
𝑁𝑎𝑡 Array of number of tasks on node 𝐿𝐹𝑗 Lowest frequency  
𝐸𝑆𝑇𝑖,𝑗 Earliest start time  𝐿𝑆𝑇𝑖 ,𝑗 Latest start time  
𝛼𝑖 Presence/absence of uncompleted ancestors  𝐿𝐶𝑇𝑗 Latest completion time 
𝑁𝑝 Number of dependent execution paths  𝑇𝐸𝑇𝑗         Total execution time 
𝐴𝑈𝑙 Average utilization of 𝑖𝑡ℎ solution  𝑇𝐼𝑇𝑗  Total idle time  
𝑁𝑙𝑡 Number of tasks on solution path 𝐸𝑗 Energy Consumption  
𝑇𝐸 Total energy consumption of CG 𝐸𝐶𝑇𝑖,𝑗 Earliest completion time  
𝑈𝑗 Utilization of resources 𝐶𝐶𝑘,𝑗 Communication cost  
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3.1 Fitness Function Formulation for Energy Consumption  
In this section, fitness function formulation for determining energy consumption in nodes of the 
CG is described.  Nodes of the CG are involved in execution of tasks of grid workflow.  Initially 
all nodes of the CG are considered empty which means no tasks have been allocated to any 
nodes. For each task 𝑇𝑖 a binary parameter 𝛼𝑖  is initialized. The initialization process can be 
expressed as given in Equation (4).   

𝛼𝑖 = �1,𝐴𝑁𝐶𝑖 = 𝜙  
0,𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ,∀𝑇𝑖          (4) 

For each tasks 𝑇𝑖  with 𝛼𝑖 = 1 , initialization of 𝐸𝑆𝑇𝑖,𝑗  and 𝐸𝐶𝑇𝑖,𝑗  are performed using the 
following two scenarios. In the first scenario, all the nodes are considered empty which 
means 𝑁𝑎𝑡[𝑗] = 0, ∀ 𝑗 ∈ {1,2,3, … ,𝑀} or 𝑆𝑛𝑒 = ∅. The initialization in the first scenarios can 
be expressed as given by Equation (5).   

𝐸𝑆𝑇𝑖,𝑗 = 0
 𝐸𝐶𝑇𝑖,𝑗 = 𝐸𝑇𝐶𝑖,𝑗

� ,∀𝑇𝑖 , 𝛼𝑖 = 1 𝑎𝑛𝑑 𝑁𝑎𝑡[𝑗] = 0, ∀ 𝑗 ∈ {1,2,3, … ,𝑀}     (5) 

For example, 𝑖𝑡ℎtask is allocated to the 𝑗𝑡ℎnode with minimum 𝐸𝐶𝑇𝑖,𝑗, thus 𝑗𝑡ℎnode will be 
treated as non-empty nodes and 𝑁𝑎𝑡[𝑗] which contains the number of allocated jobs to 𝑗𝑡ℎnode 
will be incremented by 1. Subsequently, 𝑗𝑡ℎnode will be removed from the set of empty nodes. 
In the second scenario, at least one node is considered non-empty which means  ∃ 𝑗 ∈
{1,2,3, … ,𝑀},𝑁𝑎𝑡[𝑗] ≥ 1 or 𝑆𝑛𝑒 ≠ ∅..The initialization in the second scenario can be expressed 
as given by Equation (6).  

𝐸𝑆𝑇𝑖,𝑗 = min𝑖=1,2,3,…𝑁𝑎𝑡[𝑗]�𝐸𝑇𝐶𝑖,𝑗�,      

 𝐸𝐶𝑇𝑖,𝑗 = ∑ 𝐸𝑆𝑇𝑖,𝑗 + 𝐸𝑇𝐶𝑖,𝑗
𝑁𝑎𝑡[𝑗]
𝑖=1

� ,∀𝑇𝑖 , 𝛼𝑖 = 1 𝑎𝑛𝑑 ∃ 𝑗 ∈ {1,2,3, … ,𝑀},𝑁𝑎𝑡[𝑗] ≥ 1 (6) 

After the above initialization, the value of 𝑁𝑎𝑡[𝑗] is incremented or decremented and 
according the node 𝑗 will be added to set of empty or non-empty nodes. After completion of the 
initialization for the 𝑖𝑡ℎtask, set of ancestors of all the descendants of 𝑖𝑡ℎ task is updated by 
removing 𝑖𝑡ℎtask from the ancestors as given by Equation (7). 

𝐴𝑁𝐶𝑘 = 𝐴𝑁𝐶𝑘 − {𝑇𝑖},∀ 𝑇𝑘 ∈ 𝐷𝐸𝑆𝑖    (6) 
The total execution time 𝑇𝐸𝑇𝑗  for all allocated tasks to 𝑗𝑡ℎnode can be computed by adding 𝐸𝑇𝐶𝑖,𝑗 

of all the tasks to 𝑇𝐸𝑇𝑗  as given by Equation (7). 

𝑇𝐸𝑇𝑗 =  ∑ 𝐸𝑇𝐶𝑖,𝑗
𝑁𝑎𝑡[𝑗]
𝑖=1    (7) 

For each tasks 𝑇𝑖  with  𝛼𝑖 = 0  which means all the parents are not completed, the 
initialization of 𝐸𝑆𝑇𝑖,𝑗 and 𝐸𝐶𝑇𝑖,𝑗 are performed using the following two scenarios. In the first 
scenario, 𝑁𝑎𝑡[𝑗] = 0, ∀ 𝑗 ∈ {1,2,3, … ,𝑀} or 𝑆𝑛𝑒 = ∅ is considered and the initialization can be 
expressed as given by Equation (8). 
𝐸𝑆𝑇𝑖,𝑗 = max𝑘=1,2,3,…,𝑁𝑎𝑡[𝑗]�𝐸𝐶𝑇𝑘,𝑗 + 𝐶𝐶𝑘,𝑗�

 𝐸𝐶𝑇𝑖,𝑗 = 𝐸𝑆𝑇𝑖,𝑗 + 𝐸𝑇𝐶𝑖,𝑗                             
� ,∀𝑇𝑖 , 𝛼𝑖 = 𝑁𝑎𝑡[𝑗] = 0, ∀ 𝑗 ∈ {1,2, . . ,𝑀},𝑇𝑘 ∈ 𝐷𝐸𝑆𝑖    (8) 

After the initialization, 𝑁𝑎𝑡[𝑗]is incremented by 1 and 𝑗𝑡ℎ  node is removed from the set of 
empty nodes. In the second scenario, ∃ 𝑗 ∈ {1,2,3, … ,𝑀},𝑁𝑎𝑡[𝑗] ≥ 1 or 𝑆𝑛𝑒 ≠ ∅ is considered 
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and the initialization can be expressed as given by Equation (9).    
𝐸𝑆𝑇𝑖,𝑗 = max �max𝑘∈𝐴𝑁𝐶𝑖�𝐸𝐶𝑇𝑘,𝑗 + 𝐶𝐶𝑘,𝑖� , min𝑢=1,2,3,…,𝑁𝑎𝑡[𝑗]�𝐸𝑇𝐶𝑢,𝑗 + 𝐶𝐶𝑢,𝑖� � ,

                                                                                           
                       (9) 

and, 𝐸𝐶𝑇𝑖,𝑗 = 𝐸𝑆𝑇𝑖,𝑗 + 𝐸𝑇𝐶𝑖,𝑗 ,∀𝑇𝑖 , 𝛼𝑖 = 1 𝑎𝑛𝑑 ∃ 𝑗 ∈ {1,2, … ,𝑀},𝑁𝑎𝑡[𝑗] ≥ 1   
After the initialization, 𝑁𝑎𝑡[𝑗] is incremented by 1. The latest completion time  

𝐿𝐶𝑇𝑗 of a grid work flow at 𝑗𝑡ℎ node can be computed as given by Equation (10). 
𝐿𝐶𝑇𝑗 = max𝑙=1,2,…,𝑁𝑝 �∑ 𝐸𝐶𝑇𝑘,𝑗

𝑁𝑙
𝑡

𝑘=1 �       (10) 
Makespan 𝑀𝑠𝑝𝑎𝑛  of the CG is the maximum 𝐿𝐶𝑇𝑗 of all the grid workflow being executed in 
different nodes. By using Equation (10), 𝑀𝑠𝑝𝑎𝑛  can be computed as given by Equation (11).  

𝑀𝑠𝑝𝑎𝑛   = max𝑗=1,2,…,𝑀�𝐿𝐶𝑇𝑗�         (11) 

Idle time 𝑇𝑗𝑖𝑑𝑙𝑒 of 𝑗𝑡ℎnode can be computed as given by Equation (12). 
𝑇𝑗𝑖𝑑𝑙𝑒 = 𝑀𝑠𝑝𝑎𝑛 − 𝑇𝐸𝑇𝑗 ,∀ 𝑗 ∈ 𝑆𝑛𝑒       (12) 

Energy 𝐸𝑗consumed by 𝑗𝑡ℎnode for executing all the allocated tasks can be computed as given by 
Equation (13).  

𝐸𝑗 = 𝛾 ��𝐿𝐹𝑗 × 𝑇𝑗𝑖𝑑𝑙𝑒 × �𝑉𝑗𝑚𝑖𝑛�
2� + �𝐻𝐹𝑗 × 𝑇𝐸𝑇𝑗 × �𝑉𝑗𝑚𝑎𝑥�

2��    (13) 
Total energy 𝑇𝐸 consumed by all the nodes in the CG for executing grid workflows is given by 
Equation (14). 

𝑇𝐸 = ∑ 𝐸𝑗𝑀
𝑗=1          (14) 

Utilization 𝑈𝑗 of resources at 𝑗𝑡ℎnode can be computed as given by Equation (15). 

𝑈𝑗 =
𝐸𝑗

𝑀𝑠𝑝𝑎𝑛
         (15) 

Average utilization 𝐴𝑈𝑙 of all the nodes in a CG by 𝑙𝑡ℎsolution can be expressed as given by Equation 
(16)  

𝐴𝑈𝑙 =
∑ 𝑈𝑗
𝑀
𝑗=1
𝑀

          (16) 

3.2 Adapted Genetic Algorithm 
In this section, various components of adapted genetic algorithm developed for minimizing 
energy consumption are described.  

3.2.1 Representation of Chromosome 
The representation of chromosome which is a potential solution of the identified problem related 
to energy consumption is shown in Fig. 1.  

Fig. 1. Representation of chromosome 
 

where, 𝑖, 𝑗,𝑘, 𝑙,𝑚 ∈ {1,2,3, … ,𝑀} . The above representation of chromosome shows an 
ordered sequence of nodes considering the dependencies of the tasks. All the tasks are allocated 
to the nodes of CG following the order of the sequence of the chromosome. In other words, 1st 

𝑁𝑜𝑑𝑒𝑖  𝑁𝑜𝑑𝑒𝑗 𝑁𝑜𝑑𝑒𝑘 𝑁𝑜𝑑𝑒𝑖 𝑁𝑜𝑑𝑒𝑘 … 𝑁𝑜𝑑𝑒𝑙 𝑁𝑜𝑑𝑒𝑚 𝑁𝑜𝑑𝑒𝑙 𝑁𝑜𝑑𝑒𝑚 
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task is allocated to 𝑁𝑜𝑑𝑒𝑖, 2nd task is allocated to 𝑁𝑜𝑑𝑒𝑗, 3rd task is allocated to 𝑁𝑜𝑑𝑒𝑘 and the 
last task is allocated to 𝑁𝑜𝑑𝑒𝑚 (cf. Fig. 1). The length of the chromosomes considering them as 
one dimensional arrays is equal to the total number of tasks available for allocation. The 
crossover and mutation operations used in MiE-AGA are described using Pseudo code and 
example.  

3.2.2 Adapted Crossover 
The Pseudo code of crossover operation adapted for MiE-AGA is given in Algorithm 1. To 
make the process of adapted crossover more understandable, an example (cf. Fig. 2) is provided 
for readers with three computing nodes in the CG. There are two children generated from the 
cross over. The child 1 retains the genes from the parent 1 at the bit positions where the masking 
bit pattern is 1 and the genes from parent 2 where the masking bit pattern is 0. The child 2 
retains the genes from the parent 1 at the bit positions where the masking bit pattern is 0 and the 
genes from parent 2 where the masking bit pattern is 1.  
 

Algorithm 1: Adapted Crossover 
Input: parent 1, parent 2 
Process: 
1. Randomly create a bit string of 0’s and 1’s  
2. If 𝑗𝑡ℎ location of the bit string is 1 then      
3.       Child 1 keep 𝑗𝑡ℎ location of parent 1  
4.       Child 2 keep 𝑗𝑡ℎ location of parent 2  
5. else  
6.       Child 1 keep 𝑗𝑡ℎ location of parent 2  
7.       Child 2 keep 𝑗𝑡ℎh location of parent 1  
8. endif 
Output: child 1, child 2 
 

 

Task 
Number 

1      2 3 4 5 6 7 8 9 10 

Masking 
bits  

1 0 1 1 0 0 1 0 1 1 

Parent 1 3 3 1 2 2 1 2 2 3 1 
Parent  2 2 3 2 1 2 2 1 3 2 3 
Child 1 3 3 1 2 2 2 2 3 3 1 
Child 2 2 3 2 1 2 1 1 2 2 3 

 
Fig. 2. Adapted crossover 

 

3.2.3 Adapted Mutation 
The Pseudo code of mutation operation adapted for MiE-AGA is given in Algorithm 2 [34]. To 
make the process of adapted mutation more understandable, an example (cf. Fig. 3) is provided 
for readers with three computing nodes in the CG. Randomly selects two gens and exchange the 
positions in the mutated chromosome.   
 

Algorithm 2: Adapted Mutation 

Input: chromosome 1 and mutation probability 
Process: 
1. Randomly produce a number between 0 and 1 
2. If mutation probability is less than the produced   

      number  
3.       Randomly selects two gens from the 

chromosome 
4.       Exchange the positions of the gens 
5. else  
6.       No changes in the chromosome 
7. endif 
Output: chromosome 1’ 

 

 
Fig. 3. Adapted mutation 

 

Task number 1 2 3 4 5 6 7 8 9 10 
Chromosome 3 3 1 2 2 1 2 2 3 1 
The mutated 
chromosome 

2 3 1 2 2 1 1 3 3 1 
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3.2.4 Adapted Inversion 
The Pseudo code of inversion operation adapted for MiE-AGA is given in Algorithm 3. The size 
of the group choosing for inversion depends on the stage of the optimization process. In initial 
stages, the size is generally chosen larger whereas during the last stages of optimization smaller 
size is preferred. To make the process of adapted inversion more understandable, an example is 
provided for readers with three computing nodes in the CG. The size of the group is taken 3 and 
the group of gens chosen for inversion is (1,2,2) in the example (cf. Fig. 4). 
 

Algorithm 3: Adapted Inversion 
Input: chromosome 1  
Process: 
1. Randomly choose a continuous group of gens  
2. Reverse the positions of the group of gens  
Output: chromosome 1’ 

 

 
Fig. 4. Adapted inversion 

Task Number 1 2 3 4 5 6 7 8 9 10 
Chromosome 1 3 3 1 2 2 1 2 2 3 1 
Chromosome 1’ 3 3 1 2 2 2 2 1 3 1 

3.2.5 Pseudo code of MiE-AGA 
The Pseudo code for MiE-AGA is presented in this section using the above discussed operations 
such as adapted crossover, mutation, and inversion. Initially, random solutions are generated for 
each chromosome to produce initial population used in MiE-AGA.  A self-explanatory Pseudo 
code for MiE-AGA is given in algorithm 4.  
 

Algorithm 4: MiE-AGA 
 

Notations:𝑀: Number of nodes in the CG; 𝑇: Tasks to be allocated to nodes of the CG;  
                  𝜆: Task load range;  𝜇: Computing speed of nodes; 𝑅𝑡𝑠: Range of task size;  
                 𝑁𝑔𝑒𝑛: Number of generations;  𝑆𝑝𝑜𝑝: Size of the population considered for execution 
Input: 𝑀,𝑇, 𝜆, 𝜇,𝑅𝑡𝑠, 𝑆𝑝𝑜𝑝,𝑁𝑔𝑒𝑛     
Process:  
1. Generate initial population of size 𝑆𝑝𝑜𝑝 by random task distribution and considering dependency 
2. Calculate 𝑇𝐸𝑇𝑗of each the nodes using equation (7)  
3. Calculate 𝑀𝑠𝑝𝑎𝑛of the CG using equation (11)  
4. Calculate 𝑇𝑗𝑖𝑑𝑙𝑒of each the nodes using equation (12)  
5. Calculate 𝐸𝑗  of each the nodes using equation (13)   
6. Calculate 𝑇𝐸 of each chromosome using equation (14) which is the fitness  
7. Calculate 𝑈𝑗 of each the nodes using equation (15)  
8. Calculate 𝐴𝑈𝑖  of the CG using equation (16)  
9. Arrange the population in descending order of the fitness  
10. g=1 
11. While (g<=𝑁𝑔𝑒𝑛) 
12.      Select the best half population using tournament selection approach known as parent population 
13.      p=0 
14.      While(p<=Spop) 
15.           Randomly select two chromosomes from the parent population 
16.           Perform crossover based on the probability of crossover to produce child chromosomes 
17.           p=p+2 
18.           Randomly choose chromosome from parent population 
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19.           Mutate chromosome based on the probability of mutation to produce child chromosome 
20.           p=p+1 
21.           Randomly choose chromosome from parent population 
22.           Invert chromosome based on the probability of inversion to produce child chromosome 
23.           p=p+1 
24.      endwhile 
25.      Generate new population of size 2*Spop by mixing old population and child chromosomes 
26.      Calculate  𝑇𝐸𝑇𝑗of each nodes using equation (7)  
27.      Calculate 𝑀𝑠𝑝𝑎𝑛of the CG using equation (11)  
28.      Calculate 𝑇𝑗𝑖𝑑𝑙𝑒of each nodes using equation (12)  
29.      Calculate 𝐸𝑗of each the nodes using equation (13)   
30.      Calculate 𝑇𝐸 of each chromosome using (14) which is the  fitness  
31.      Calculate 𝑈𝑗 of each nodes using equation (15)  
32.      Calculate 𝐴𝑈𝑖  of the CG using equation (16)  
33.      Arrange the new population in descending order of the fitness  
34.      Select the best half of the new population and replace with the old population  
35.      Store the schedule considering 𝑀𝑠𝑝𝑎𝑛, 𝑇𝐸 and 𝐴𝑈𝑖 
36. endwhile 
37. exit       

Output: Schedule of final generation considering 𝑀𝑠𝑝𝑎𝑛, 𝑇𝐸 and 𝐴𝑈 

4. Simulation and Analysis of Results 
In this section, extensive simulation is performed to evaluate the performance of MiE-AGA. The 
three metrics considered for performance evaluation are; energy consumption, makespan and 
average utilization. The state-of-the-art algorithms used for comparative analysis are; EAMM, 
HEFT, Min-Min and Max-Min.  

Table 2. Parameter values and ranges used in Simulation    

4.1 Simulation Environment 
The simulation is designed by writing programs in Java using Eclipse IDE and integrating them 
to GridSim simulator. Simulation environment uses a random generator with uniform 
distribution. The values of the load, processing speed, task size and communication cost are 
produced randomly between the given ranges. Task dependency graph also known as grid 
workflow is generated based on the communication cost matrix. Frequencies and voltages of 

Input Parameter                                 Value Input Parameter Value 
Number of nodes 3-188 Probability of applying crossover 0.7 
Number of tasks 10-512 Probability of applying mutation 0.05 
Range of load ( λ ) 1-100 MIPS Probability of applying inversion 0.01 
Range of computing power ( µ ) 101-150 MIPS Population size 100 
Range of task Size 2000-5000 MI Range of Lower Voltage 0-2 Volts 
Range of Lower Frequency 0-2  MHz Range  of Upper Voltage 1-3  Volts 
Range of Upper Frequency 1-3  MHz Range of Communication cost 0-20 
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nodes in CG are also randomly generated within specified range. The ranges and value of 
parameters used in the simulation are listed in the Table 2. All the values generated conform to 
similar models for the same purpose. The simulator designed for the simulation has ten classes; 
namely, random_generator.java, selection.java, crossover.java, mutation.java, inversion.java, 
calculate_parameters.java, sort.java, global_scheduler.java, local_scheduler.java and Main.java. 
The simulation is performed in a SUN FIRE X4470 Server @ 4 Intel Xeon 𝜇𝑃 7500 Series with 
up to 512 GB of memory and over 1.8 TB of internal storage. The system is equipped with Sun 
Studio software with Open MP and MPI programming models. The simulations are classified 
into three categories small (3 to 64 nodes and 10 to 128 tasks), medium (65 to 128 nodes and 
128 to 256 tasks) and large (129 to 188 nodes and 256 to 512 tasks) grid. 

4.2 Analysis of Results with Small Grid Workflow                      
In this section, the optimization performance of MiE-AGA is analyzed. 

  

Fig. 5. Optimization of energy consumption in 
case of   MiE-AGA with 128 tasks and 8 nodes 

Fig. 6. Optimization of makespan in case of  
MiE-AGA with 128 tasks and 8 nodes 

 Table 3. Comparison of energy consumption in joule (J) with 128 tasks 

           No of nodes 

Algorithm 

16 24 32 40 48 56 64 

MiE-AGA 2199171 2653912 3567576 4150412 5003475 5739492 5962324 

EAMM 2199330 2653966 3567688 4150788 5003596 5739610 5962457 

HEFT 2199590 2653976 3567925 4151011 5003937 5739749 5962636 

Min-Min 2199661 2654241 3568058 4151371 5003984 5740145 5962852 

Max-Min 2200060 2654356 3568223 4151557 5004290 5740472 5962992 
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Result in Fig. 5 shows the optimization of energy consumption of nodes in case of MiE-AGA 
with increasing number of generations. It can be clearly observed that energy consumption of 
nodes in the CG decreases with increasing number of generations up to around 251 generations. 
The optimization converges completely reaching to 500 generations and minimum consumed 
energy is approximately 1551870 𝐽 . This can be attributed to the fact that MiE-AGA considers 
energy consumption of nodes while scheduling of tasks in CG. Result in Fig. 6 shows the 
optimization of Makespan of CG in case of MiE-AGA with increasing number of generations. It 
can be clearly observed that makespan of nodes in the CG decreases with increasing number of 
generations up to around 500 generations. The optimization converges completely reaching to 
above 500  generations and minimum makespan is approximately  98994 𝑠  . This can be 
attributed to the fact that MiE-AGA considers dependency of task while scheduling of tasks in 
CG.    

Results in Table 3 show the comparison of energy consumption of nodes between MiE-AGA 
and state-of-the-arts algorithms. The comparative analysis clearly shows that MiE-AGA has 
lower energy consumption as compared to the state-of-the-arts techniques for each of the 
number of nodes considered in the results. This is due to the consideration of energy 
consumption while scheduling of tasks in case of MiE-AGA .Additionally, it is also noteworthy 
that energy consumption of nodes increases with increasing number of nodes in CG for each of 
the algorithms considered but the increment in energy consumption is smaller in case of MiE-
AGA as compared to the state-of-the-arts algorithms. 

 
Table 4. Comparison of makespan in second (s) with 128 tasks 
 

             No of nodes 

Algorithm 

16 24 32 40 48 56 64 

MiE-AGA 79362.5 63345 55037.4 51558.9 41017.0 29372.9 24420.8 
HEFT 79703.5 63446.6 55275.2 51612.2 41054.7 29540.3 24517.3 

Min-Min 79743.1 63491.3 55308.3 51647.5 41105.8 29622.1 24596.7 
Max-Min 79918 63572.5 55378.7 51867.9 41199.7 29709.7 24651.8 
EAMM 80462.4 63583.8 56581.6 51967.2 41235.6 29752.8 24719.5 

 
Results in Table 4 show the comparison of makespan of CG between MiE-AGA and state-

of-the-arts algorithms. The comparative analysis clearly shows that MiE-AGA has lower 
makespan as compared to the state-of-the-arts algorithms for each of the number of nodes 
considered in the results. This is due to the consideration of dependency of tasks while 
scheduling of tasks in case of MiE-AGA. Additionally, it is also noteworthy that makespan of 
CG increases with increasing number of nodes in CG for each of the algorithms considered but 
the increment in makespan is smaller in case of MiE-AGA as compared to the state-of-the-arts 
algorithms. 
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Table 5. Average utilization in case of MiE-AGA  
 

          No of nodes 

No of tasks 

16 24 32 40 48 56 64 

128 0.3264 0.2908 0.2814 0.2214 0.2049 0.1296 0.0828 
256 0.4538 0.4042 0.3911 0.3078 0.2848 0.1802 0.1151 

 

Results in Table 5 show the average utilization in case of MiE-AGA for 128 and 256 tasks 
with increasing number of nodes in CG. It can be clearly observed that average utilization 
decreases with increasing number of nodes in CG and increases with increasing number of tasks 
in CG. This can be attributed to the fact that MiE-AGA considers utilization of nodes while 
scheduling of tasks in CG.  

4.3 Analysis of Results with Medium Grid Workflow 
Experiment has been performed for the medium grid workflow with various possibilities. 
Next experiment takes the observation on energy and makespan considering 72 nodes and 256 
tasks. Results are shown in Fig. 7 and Fig. 8. 

  

Fig. 7. Optimization of energy consumption in case 
of MiE-AGA with 256 tasks and 72 nodes 

Fig. 8. Optimization of makespan in case of MiE-
AGA with 256 tasks and 72 nodes 

  Table 6. Comparison of energy consumption in joule (J) with 256 tasks  

      No of nodes 

Algorithm 80 88 96 104 112 120 128 
MiE-AGA 10175152 11179921 11477518 11673336 11853757.8  12489556 12724188 

EAMM 10175496 11180631 11477831 11673951 11859864.2  12490203 12724792 
HEFT 10175669 11181264 11478590 11674213 11860465.6  12490554 12725459 

Min-Min 10175803 11181953 11479382 11674625 11866324.5  12491024 12725583 
Max-Min 10176128 11182552 11480043 11675257 11871008.3 12491451 12725655 
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Result in Fig. 7 shows the optimization of energy consumption of nodes in case of MiE-AGA 
with increasing number of generations. It can be clearly observed that energy consumption of 
nodes in the CG decreases with increasing number of generations up to around 1900 generations. 
The optimization converges completely reaching to 2000 generations and minimum consumed 
energy is approximately MiE-AGA is 9707300 𝐽. This can be attributed to the fact that MiE-
AGA considers energy consumption of nodes while scheduling of tasks in CG. Fig. 8 shows the 
optimization of Makespan of CG in case of MiE-AGA with increasing number of generations. It 
can be clearly observed that makespan of nodes in the CG decreases with increasing number of 
generations up to around 1950 generations. The optimization converges completely reaching to 
above 2000 generations and minimum makespan with proposed MiE-AGA is  99134.3 𝑠. This 
can be attributed to the fact that MiE-AGA considers dependency of task while scheduling of 
tasks in CG.    

A comparative study, of the proposed model with other models, has been performed to 
observe energy. Results in Table 6 show the comparison of energy consumption of nodes 
between MiE-AGA and state-of-the-arts algorithms. The comparative analysis clearly shows that 
MiE-AGA has lower energy consumption as compared to the state-of-the-arts techniques for 
each of the number of nodes considered in the results. This is due to the consideration of energy 
consumption while scheduling of tasks in case of MiE-AGA .Additionally, it is also noteworthy 
that energy consumption of nodes increases with increasing number of nodes in CG for each of 
the algorithms considered but the increment in energy consumption is smaller in case of MiE-
AGA as compared to the state-of-the-arts algorithms. 

 
 Table 7. Comparison of makespan in second (s) with 256 tasks  

No of nodes 
Algorithm 80 88 96 104 112 120 128 
MiE-AGA 104125.6 94125.6 70336.7 62967.1 54739.6 48978.2 46166.5 

HEFT 104217.1 94217.1 70739.4 63074.8 54872.3 48998.6 46196.7 
Min-Min 104260.7 94260.7 70956.2 63105.4 54923.2 49089.1 46221.5 
Max-Min 104298.6 94298.6 71178.2 63158.7 54958.2 49191.4 46305.2 
EAMM 104304.2 94304.2 71426.5 63174.9 54985.4 49298.8 46540.4 

 
From Table 7, it is observed that when number of nodes increases, makespan decreases. The 

proposed MiE-AGA is performing better than other models. Results in Table 7 show the 
comparison of makespan of CG between MiE-AGA and state-of-the-arts algorithms. The 
comparative analysis clearly shows that MiE-AGA has lower makespan as compared to the 
state-of-the-arts algorithms for each of the number of nodes considered in the results. This is due 
to the consideration of dependency of tasks while scheduling of tasks in case of MiE-AGA. 
Additionally, it is also noteworthy that makespan of CG increases with increasing number of 
nodes in CG for each of the algorithms considered but the increment in makespan is smaller in 
case of MiE-AGA as compared to the state-of-the-arts algorithms. 
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  Table 8. Average utilization in case of MiE-AGA with 256 tasks 
Nodes 80 88 96 104 112 120 128 

MiE-AGA 0.137081 0.117574 0.10602 0.075709 0.056212 0.045877 0.041787 
 

Results in Table 8 show the average utilization in case of MiE-AGA for 128 and 256 tasks 
with increasing number of nodes in CG. It can be clearly observed that average utilization 
decreases with increasing number of nodes in CG and increases with increasing number of tasks 
in CG. This can be attributed to the fact that MiE-AGA considers utilization of nodes while 
scheduling of tasks in CG.  

4.4 Analysis of Results with Large Grid Workflow  
For the large grid workflow, experiment has been performed with various possibilities. 
This experiment takes the observation on energy and makespan. Makespan is obtained 
considering 180 nodes and 512 tasks whereas energy is obtained considering 136 nodes and 512 
tasks. It is because; on less number of nodes energy was not quite observable. Results are shown 
in Fig. 9 and Fig. 10. 

 
 

Fig. 9. Optimization of energy consumption in 
case of MiE-AGA with 512 tasks and 136 nodes 

Fig. 10. Optimization of makespan in case of 
MiE-AGA with 512 tasks and 136 nodes 

Result in Fig. 9 shows the optimization of energy consumption of nodes in case of MiE-AGA 
with increasing number of generations. It can be clearly observed that energy consumption of 
nodes in the CG decreases with increasing number of generations up to around 4951 generations. 
The optimization converges completely reaching to 5000 generations and minimum consumed 
energy is approximately  using MiE-AGA is 25517663 𝐽. This can be attributed to the fact that 
MiE-AGA considers energy consumption of nodes while scheduling of tasks in CG. Result in 
Fig. 10 shows the optimization of Makespan of CG in case of MiE-AGA with increasing number 
of generations. It can be clearly observed that makespan of nodes in the CG decreases with 
increasing number of generations up to around 4950 generations. The optimization converges 
completely reaching to above 5000 generations and minimum makespan using MiE-AGA is 
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125925.90 𝑠  . This can be attributed to the fact that MiE-AGA considers dependency of task 
while scheduling of tasks in CG.    

 
Table 9. Comparison of energy consumption in joule (J) with 512 tasks  

No of nodes 
Algorithm 136 144 152 160 168 172 

MiE-AGA 25517663 29761492 32421212 35778018 39835972 42835915 
EAMM 25518958 29762850 32422484 35779908 39836342 42836333 
HEFT 25519875 29764174 32424024 35780608 39837661 42837657 

Min-Min 25521040 29765255 32425764 35781138 39838297 42838293 
Max-Min 25522129 29766550 32426852 35782580 39839339 42839338 

 
From Table 9 it is clear that energy increased when number of nodes increased. Again, MiE-

AGA is performing better than other models. A comparative study, of the proposed model with 
other models, has been performed to observe energy. Results in Table 9 show the comparison of 
energy consumption of nodes between MiE-AGA and state-of-the-arts algorithms. The 
comparative analysis clearly shows that MiE-AGA has lower energy consumption as compared 
to the state-of-the-arts techniques for each of the number of nodes considered in the results. This 
is due to the consideration of energy consumption while scheduling of tasks in case of MiE-
AGA .Additionally, it is also noteworthy that energy consumption of nodes increases with 
increasing number of nodes in CG for each of the algorithms considered but the increment in 
energy consumption is smaller in case of MiE-AGA as compared to the state-of-the-arts 
algorithms. 

Table 10. Comparison of makespan in second (s) with 512 tasks  

No of nodes 
Algorithm 136 144 152 160 168 172 

MiE-AGA 245606.5 205031.1 180540.1 119378.8 109926.9 101092.9 
HEFT 245936.8 205193.8 180807.5 119767 110373.6 101470 

Min-Min 246041.1 205238.8 180983.3 119845.6 110386.9 101696.4 
Max-Min 246262 205357.2 181188.3 120056.8 110519.6 101702.3 
EAMM 246384.5 205431.6 181265.8 120209.2 110689.5 101817.4 

 
A Comparative study, of the proposed model with other models, has been performed to 

observe the makespan using 136 nodes to 172 nodes and 512 tasks. Results in Table 10 show 
the comparison of makespan of CG between MiE-AGA and state-of-the-arts algorithms. The 
comparative analysis clearly shows that MiE-AGA has lower makespan as compared to the 
state-of-the-arts algorithms for each of the number of nodes considered in the results. This is due 
to the consideration of dependency of tasks while scheduling of tasks in case of MiE-AGA. 
Additionally, it is also noteworthy that makespan of CG increases with increasing number of 
nodes in CG for each of the algorithms considered but the increment in makespan is smaller in 
case of MiE-AGA as compared to the state-of-the-arts algorithms. 
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Table 11. Average utilization in case of MiE-AGA with 512 tasks  

Nodes 136 144 152 160 168 172 
MiE-AGA 0.103677 0.090216 0.086225 0.069408 0.065974 0.060106 

 
Results in Table 11 show the average utilization in case of MiE-AGA for 128 and 256 tasks 

with increasing number of nodes in CG. It can be clearly observed that average utilization 
decreases with increasing number of nodes in CG and increases with increasing number of tasks 
in CG. This can be attributed to the fact that MiE-AGA considers utilization of nodes while 
scheduling of tasks in CG.  

5. Conclusion and Future Work 
In this paper, a scheduling technique for Minimizing Energy consumption using Adapted 
Genetic Algorithm (MiE-AGA) for dependent tasks in computational grid has been proposed 
and simulated in Java based programs integrated with GridSim. From the analysis of simulation 
results obtained with small, medium and large scal grid, following conclusions have been made. 
MiE-AGA effectively minimizes energy consumption and makespan with increasing number of 
generations. Energy consumption converges with 300, 2000 and 5000 generations for small, 
medium and large scale grid respectively. Makespan converges with 500 ,  1300 ,  5000 
generations for small, medium and large scale grid respectively. Average resource utilization 
increases with increasing number of tasks and decreases with increasing number of nodes. The 
minimum energy consumption observed are 1551870 𝐽, 9707300 𝐽 and 25517663 𝐽 for small, 
medium and large scale grid respectively. The minimum makespan observed are 99134.3 𝑠, 
125925.90 𝑠  and 98994 𝑠  for small, medium and large scale grid respectively. Energy 
consumption and makespan of MiE-AGA are lower as compared to the state-of-the-arts 
algorithms for all the scales of the grid considered. In future research, authors will explore multi-
objective meta-heuristics techniques for energy consumption with other QoS parameter 
optimization.  
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