KSII Transactions on Internet and Information Systems (TIIS)
/
제10권10호
/
pp.4864-4882
/
2016
In this work, we consider the optimization problem of minimizing energy consumption for real-time multicast over wireless multi-hop networks. Previously, a distributed primal-dual subgradient algorithm was used for finding a solution to the optimization problem. However, the traditional subgradient algorithms have drawbacks in terms of i) sensitivity to iteration parameters; ii) need for saving previous iteration results for computing the optimization results at the current iteration. To overcome these drawbacks, using a joint network coding and scheduling optimization framework, we propose a novel distributed primal-dual Random Deflected Subgradient (RDS) algorithm for solving the optimization problem. Furthermore, we derive the corresponding recursive formulas for the proposed RDS algorithm, which are useful for practical applications. In comparison with the traditional subgradient algorithms, the illustrated performance results show that the proposed RDS algorithm can achieve an improved optimal solution. Moreover, the proposed algorithm is stable and robust against the choice of parameter values used in the algorithm.
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권9호
/
pp.3120-3137
/
2021
Small-sized IoT wireless sensing devices can be deployed with small aircraft such as drones, and the deployment of mobile IoT devices can be relocated to suit data collection with efficient relocation algorithms. However, the terrain may not be able to predict its shape. Mobile IoT devices suitable for these terrains are hopping devices that can move with jumps. So far, most hopping sensor relocation studies have made the unrealistic assumption that all hopping devices know the overall state of the entire network and each device's current state. Recent work has proposed the most realistic distributed network environment-based relocation algorithms that do not require sharing all information simultaneously. However, since the shortest path-based algorithm performs communication and movement requests with terminals, it is not suitable for an area where the distribution of obstacles is uneven. The proposed scheme applies a simple Monte Carlo method based on relay nodes selection random variables that reflect the obstacle distribution's characteristics to choose the best relay node as reinforcement learning, not specific relay nodes. Using the relay node selection random variable could significantly reduce the generation of additional messages that occur to select the shortest path. This paper's additional contribution is that the world's first distributed environment-based relocation protocol is proposed reflecting real-world physical devices' characteristics through the OMNeT++ simulator. We also reconstruct the three days-long disaster environment, and performance evaluation has been performed by applying the proposed protocol to the simulated real-world environment.
International Journal of Computer Science & Network Security
/
제22권4호
/
pp.203-208
/
2022
The occurrence of Type 2 Diabetes Mellitus (T2DM) is hoarding globally. All kinds of Diabetes Mellitus is controlled to disrupt over 415 million grownups worldwide. It was the seventh prime cause of demise widespread with a measured 1.6 million deaths right prompted by diabetes during 2016. Over 90% of diabetes cases are T2DM, with the utmost persons having at smallest one other chronic condition in UK. In valuation of contemporary applications of Big Data (BD) to Diabetes Medicare by sighted its upcoming abilities, it is compulsory to transmit out a bottomless revision over foremost theoretical literatures. The long-term growth in medicine and, in explicit, in the field of "Diabetology", is powerfully encroached to a sequence of differences and inventions. The medical and healthcare data from varied bases like analysis and treatment tactics which assistances healthcare workers to guess the actual perceptions about the development of Diabetes Medicare measures accessible by them. Apache Spark extracts "Resilient Distributed Dataset (RDD)", a vital data structure distributed finished a cluster on machines. Machine Learning (ML) deals a note-worthy method for building elegant and automatic algorithms. ML library involving of communal ML algorithms like Support Vector Classification and Random Forest are investigated in this projected work by using Jupiter Notebook - Python code, where significant quantity of result (Accuracy) is carried out by the models.
본 논문에서는 중앙제어 형 기반 시설 없이 단말 간 자율적인 협력을 통해 무선 통신을 수행하는 분산 네트워크에서 단말 간 동기 획득을 위한 분산 동기 알고리즘에 관해 연구하였다. 무선 통신을 수행하기 위해 단말 간 동기는 필수적으로 획득되어야 하고, 따라서 이를 위한 다양한 분산 동기 알고리즘들이 활발히 연구되어 왔다. 하지만 대부분의 분산 동기 알고리즘에 관한 연구는 네트워크에 속한 모든 단말이 예외 없이 규칙을 따르는 경우에 한정되어 있다. 이 때문에 하나 이상의 단말이 기능 고장을 일으켜 오작동을 유발하거나, 혹은 단말 간 동기 획득을 방해할 목적으로 의도적인 오작동을 일으키는 단말이 네트워크에 존재하는 경우 기존 분산 동기 알고리즘으로는 단말 간 동기 획득을 보장할 수 없다. 이에 본 논문에서는 오작동이 존재하는 분산 네트워크에서도 효과적으로 단말 간 동기를 획득할 수 있는 신뢰도 기반의 적응적 컨센서스 알고리즘을 제안하고 실험적으로 검증하였다.
본 논문은 무선 ATM 서비스를 위한 CDMA WATM 시스템을 제시하며, 매체 접속 방식으로 전송 스케줄링과 슬롯 및 무선 링크 할당 알고리즘을 가진 중앙 제어 예약 접속 방식 (CRMA/TSDA)을 제안한다. 또한, 본 논문에서는 CDMA WATM 시스템을 위한 무선 접속 및 링크 제어 방식으로 지역정보 슬롯 및 링크 할당 알고리즘과 광역정보 슬롯 및 링크 할당 알고리즘을 제안하고, 모의 실험을 통하여 양방향 링크에서의 시스템 용량과 성능을 분석하였다. 제시된 접속 방식 및 제어 방식은 기존의 CDMA 랜덤 접속 방식에 비해 만족할 만한 성능을 보이며, ATM 서비스의 요구 품질을 만족시키며 수용할 수 있다. 특히, 지역 정보 제어 방식은 준최적의 광역 정보 방식에 견줄만한 성능을 갖는다.
The anti-collision algorithms to identify a number of tags in real-time in RFID systems are divided into the anti-collision algorithms based on the Framed slotted ALOHA that randomly select multiple slots to identify the tags, and the anti-collision algorithms based on the Tree-based algorithm that repeat the questions and answer process to identify the tags. In the hybrid algorithm which is combined the advantages of these algorithms, tags are distributed over the frames by selecting one frame among them and then identified by using the Query tree frame by frame. In this hybrid algorithm, however, the time of identifying all tags may increase if many tags are concentrated in a few frames. In this study, to improve the performance of the hybrid algorithm, we suggest an improved algorithm that the tags select a specific group of frames based on the earlier bits of the tag ID so that the tags are distribute equally over the frames. By using the simulation and mathematical analysis, we show that the suggested algorithm outperforms traditional hybrid algorithm from the viewpoint of the number of queries per frame and the time of identifying all tags.
KSII Transactions on Internet and Information Systems (TIIS)
/
제9권9호
/
pp.3293-3311
/
2015
Cloud services are required to be composed as a single service to fulfill the workflow applications. Service composition in Cloud raises new challenges caused by the diversity of users with different QoS requirements and vague preferences, as well as the development of cloud computing having geographically distributed characteristics. So the selection of the best service composition is a complex problem and it faces trade-off among various QoS criteria. In this paper, we propose a Cloud service composition approach based on evolutionary algorithms, i.e., NSGA-II and MOPSO. We utilize the combination of multi-objective evolutionary approaches and Decision-Making method (AHP) to solve Cloud service composition optimization problem. The weights generated from AHP are applied to the Crowding Distance calculations of the above two evolutionary algorithms. Our algorithm beats single-objective algorithms on the optimization ability. And compared with general multi-objective algorithms, it is able to precisely capture the users' preferences. The results of the simulation also show that our approach can achieve a better scalability.
Database classification is an important preprocessing step for the multi-database mining (MDM). In fact, when a multi-branch company needs to explore its distributed data for decision making, it is imperative to classify these multiple databases into similar clusters before analyzing the data. To search for the best classification of a set of n databases, existing algorithms generate from 1 to ($n^2-n$)/2 candidate classifications. Although each candidate classification is included in the next one (i.e., clusters in the current classification are subsets of clusters in the next classification), existing algorithms generate each classification independently, that is, without taking into account the use of clusters from the previous classification. Consequently, existing algorithms are time consuming, especially when the number of candidate classifications increases. To overcome the latter problem, we propose in this paper an efficient approach that represents the problem of classifying the multiple databases as a problem of identifying the connected components of an undirected weighted graph. Theoretical analysis and experiments on public databases confirm the efficiency of our algorithm against existing works and that it overcomes the problem of increase in the execution time.
기존에 제안된 대부분의 병렬 조인 알고리즘들은 데이타베이스가 여러 처리 노드에 분할되어 저장되는 데이타베이스 분할 시스템을 가정하였다. 데이타베이스 분할 시스템은 다수의 노드들을 연결할 수 있으며 지리적으로 분산된 환경도 지원할 수 있다는 장점을 갖지만, 데이타베이스 공유 시스템에 비해 부하 분산이나 시스템 가용성이 떨어진다는 단점을 갖는다. 본 논문에서는 데이타베이스 공유 시스템의 특성을 이용한 동적 부하분산 기법을 제안하고, 제안한 동적 부하분산 기법을 이용하여 기존의 해쉬 조인 알고리즘들을 데이타베이스 공유 시스템에 확장한다. 그리고, 다양한 시스템 구성 및 데이터베이스 부하 환경에서 모의 실험을 수행함으로써 데이타베이스 공유 시스템에서 동적 부하분산 기법의 효과 및 해쉬 알고리즘들의 성능 차이를 정량적으로 분석한다.
이 논문에서는 적외선 센서를 가진 다수의 감시 로봇에서 획득한 정보를 융합하여 분산되어있는 표적의 위치 좌표를 추정하는 기법을 제안한다. 방위각(azimuth)과 표적을 대응시키는 방법으로 최대-우도(maximum likelihood), 깊이-우선(depth-first), 너비-우선(breadth-first) 트리 탐색(tree search) 기법을 각각 적용하며, 후보선정 및 가지치기(pruning)에 사용하는 정보는 표적의 방위각과 적외선 센서 화면에서 표적의 픽셀 수만을 활용한다. 방위각과 표적이 대응된 후에는 하나의 표적을 가리키는 방위각들에 최소 제곱 오차(least square error) 알고리듬을 적용하여 최적 교점을 구함으로써 표적의 위치 좌표를 추정한다. 제안한 세 가지 탐색 기법 및 위치 추정 기법의 좌표 추정성능, 복잡도, 오차 성능을 모의실험으로 제시하여 성능을 비교한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.