• Title/Summary/Keyword: distortion

Search Result 5,881, Processing Time 0.033 seconds

PRACTICAL WAYS TO CALCULATE CAMERA LENS DISTORTION FOR REAL-TIME CAMERA CALIBRATION

  • Park, Seong-Woo;Hong, Ki-Sang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.125-131
    • /
    • 1999
  • In this paper, we address practical methods for calculating camera lens distortion for real time applications. Although the lens distortion problem can be easily ignored for constant-parameter lenses, in the field of real-time camera calibrations, for zoom lenses a large number of calculations are needed to calculate the distortion. However, if the distortion can be calculated independently of the other camera parameter, we can easily calibrate a camera without the need for a large number of calculations. Based on Tsai's camera model, we propose two different methods for calculating lens distortion. These methods are so simple and require so few calculations that the lens distortion can be rapidly calculated even in real-time applications. The first method is to refer to the focal length - lens distortion Look Up Table(LUT), which is constructed in the initialization process. The second method is to use the relationship between the feature points found in the image. Experiments were carried out for both methods, results of which show that the proposed methods are favorably comparable in performance with non-real full optimization method.

A Study on the Welding Distortion Analysis According to Rib Height in Fillet Welding (필릿용접에서 리브높이에 따른 용접변형 해석에 대한 연구)

  • Kim, Yong-Rae;Song, Gyu-Yeong;Wang, Chao;Kim, Jae-Woong
    • Journal of Welding and Joining
    • /
    • v.31 no.6
    • /
    • pp.107-111
    • /
    • 2013
  • The welding distortion is caused by welding heat in the structures which are widely used in shipbuilding and automotive industries, thus many researchers have proposed such methods to control the welding distortion through trials and numerical studies. The welding distortion has been the main cause of low productivity due to the structural strength degradation, apparent flaw, additional deformation caused by the process followed the current assembly step, and the increase of correction workload. The deformation of fillet welding is investigated in this study, and the influence of the rib height on the welding distortion is verified through the actual experiment. And the numerical analysis model using the FE software MSC.marc for analysis of welding distortion is proposed.

Control of Welding Distortion for Thin Panel Block Structure using Mechanical Tensioning Method (기계적 인장법을 이용한 박판 평 블록의 용접변형 제어)

  • Kim, Sang-Il
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.1 s.145
    • /
    • pp.68-74
    • /
    • 2006
  • The welding distortion of a hull structure in the shipbuilding industry is inevitable at each assembly stage. This geometric inaccuracy caused by the welding distortion tends to preclude the introduction of automation and mechanization and needs the additional man-hours for the adjusting work at the following assembly stage. To overcome this problem, a distortion control method should be applied. For this purpose, it is necessary to develop an accurate prediction method which can explicitly account for the influence of various factors on the welding distortion. The validity of the prediction method must be also clarified through experiments. For the purpose of reducing the weld-induced bending deflection, this paper proposes the mechanical tensioning method (MTM) as the optimum distortion control method. The validity of this method has been substantiated by a number of numerical simulations and actual measurements.

Analysis of Correction Displacements of the Projected Distortion Image (투사된 영상에 대한 화면 변위 보정에 관한 연구)

  • Chi, Yongseok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.18-21
    • /
    • 2021
  • This paper analyzes the distortion correction of the in the micro DMD(digital micro mirror device) projector system using 0.25 or less optical throwing distance ratio. The distortion of projected image occurs depending on the performance of the optical lens, the installation location of the projection system, and the tilt of the screen. This study analyzed the physical tilt values influencing of the distortion of projected image, removed the tilt distortion of throwing distance ratio optical lens, and adjusted the distortion image by the simulation of calibration displacements. The results of this study demonstrated within 5% TV distortion reference. Moreover, the correction method reduced the pin-distortion correction of projection system.

Zoom Lens Distortion Correction Of Video Sequence Using Nonlinear Zoom Lens Distortion Model (비선형 줌-렌즈 왜곡 모델을 이용한 비디오 영상에서의 줌-렌즈 왜곡 보정)

  • Kim, Dae-Hyun;Shin, Hyoung-Chul;Oh, Ju-Hyun;Nam, Seung-Jin;Sohn, Kwang-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.14 no.3
    • /
    • pp.299-310
    • /
    • 2009
  • In this paper, we proposed a new method to correct the zoom lens distortion for the video sequence captured by the zoom lens. First, we defined the nonlinear zoom lens distortion model which is represented by the focal length and the lens distortion using the characteristic that lens distortion parameters are nonlinearly and monotonically changed while the focal length is increased. Then, we chose some sample images from the video sequence and estimated a focal length and a lens distortion parameter for each sample image. Using these estimated parameters, we were able to optimize the zoom lens distortion model. Once the zoom lens distortion model was obtained, lens distortion parameters of other images were able to be computed as their focal lengths were input. The proposed method has been made experiments with many real images and videos. As a result, accurate distortion parameters were estimated from the zoom lens distortion model and distorted images were well corrected without any visual artifacts.

WELDING-INDUCED BUCKLING INSTABILITIES IN THIN PLATES

  • Han, Myoung-Soo;Tsai, Chon-Liang
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.661-667
    • /
    • 2002
  • Welding-induced buckling distortion is one of the most problematic concerns in both design and fabrication of welded thin-plate structures. This paper deals with experimental and numerical results of the welding-induced longitudinal and/or buckling distortion occurring in welding of 6mm-thick AH36 high strength steel plates. Effects of the heat input and the plate size on the distortion were experimentally evaluated for square plates. Bead-on-plate welding was performed with the submerged arc welding process along the middle line of plate specimens. Experimental results showed that the longitudinal distortion made a single curvature in the plate, and the distortion magnitude along the weld centerline was proportional to the heat input and the plate size. The experimental results were used to examine the validity of the numerical simulation procedure for welding-induced distortion where the longitudinal distortion mode and magnitude were numerically quantified. Three-dimensional, large deformation, welding simulations were performed for selected weld models. Numerical results of the distortion mode and magnitude were in a good agreement with experimental ones. Depending on the presence of halting the distortion growth during the cooling cycle of welding, the condition discriminating buckling distortion from longitudinal distortion was established. Eigenvalue analyses were performed to check the buckling instability of tested plates with different sizes subjected to different heat inputs. The perturbation load pattern for the analysis was extracted from longitudinal inherent strain distributions. Critical buckling curve from the eigenvalue analyses revealed that the buckling instability is manifested when plate size or heat input increases.

  • PDF

Distortion Correction in Magnetic Resonance Images on the Measurement of Muscle Cross-sectional Area (자기공명영상을 이용한 근육 단면적 측정법의 활용을 위한 영상왜곡보정)

  • Hong, Cheol-Pyo;Lee, Dong-Hoon;Park, Ji-Won;Han, Bong-Soo
    • The Journal of Korean Physical Therapy
    • /
    • v.24 no.2
    • /
    • pp.66-72
    • /
    • 2012
  • Purpose: The purpose of this study is to explore the importance of the image distortion correction in the cross sectional area measurement for the iliopsas muscle, tensor fasciae latae muscle, gluteus maximus muscle and the knee extensor muscles, by using (magnetic resonance imaging) MRI. Methods: This study was performed using an open 0.32T MRI system. To estimate the image distortion, T1 images for an AAPM homogeneity/linearity phantom were acquired, and the region in which the maximum geometric distortion was less than or equal to the pixel size (1.6 mm) of the images, it was defined as the distortion correction-free region. The T2 images for a human subject's pelvis and thigh in normal positions were obtained. Then, after the regions of interest in the pelvis and thigh were moved into the distortion correction-free region, T2 images for the pelvis and thigh were scanned with the same imaging parameters used in the previous T2 imaging. The cross-sectional areas were measured in the two T2 images that were obtained in the normal position, and the distortion correction-free region, as well as the area error caused by geometric image distortion was calculated. Results: The geometrical distortion is gradually increased, from the magnet center to the outer region, in axial and coronal plane. The cross-sectional area error of gluteus maximus muscle and the knee extensors was as high as 9.27% and 3.16% in before and after distortion correction, respectively. Conclusion: The cross-sectional area of the muscles that suffered from the geometrical distortion is necessary to correct for the estimation of the intervention.

The Design of Wide Angle Mobile Camera Corrected Optical Distortion for Peripheral Area (주변부 상의 왜곡을 보정한 모바일 광각 카메라의 광학적 설계)

  • Kim, Se-Jin;Jeong, Hye-Jung;Lim, Hyeon-Seon
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.4
    • /
    • pp.503-507
    • /
    • 2013
  • Purpose: This study was to design wide angle mobile camera corrected optical distortion for peripheral area, which were reduced optical distortion and TV distortion by using 4 aspherical lenses. Methods: The optical design was satisfied with ${\pm}1%$ optical distortion in viewing angle of $95^{\circ}$ and total length of optical system was less than 4.5 mm which was considering a thickness of mobile camera. 1/3.2 inch (5M) CCD sensor was used in the optical system and set design condition to satisfy MTF which was over than 20% in 140 lp/mm. Results: Optimized wide angle mobile camera showed ${\pm}1%$ optical distortion in full field of $95^{\circ}$ viewing angle and TV distortion was 0.46% so that distortion of peripheral area was reduce. MTF showed over than 20% in every field. Ray aberration and astigmatism were small amount so that it showed stable performance. Conclusions: Obtain wider and clearer view which is reduced image distortion of surrounding area via optical method in wide angle mobile camera which has wider view angle than current mobile camera. And it was able to fix a demerit when it occurred via software correction. It is able to apply to study of camera which is related to spectacles.

A New Method Using Geometric Invariability for Lens Distortion Correction (기하학적 불변성을 이용한 새로운 렌즈 보정 기법)

  • Cao, Van-Toan;Cho, Sang-Bock
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.6
    • /
    • pp.115-123
    • /
    • 2011
  • Most of cameras being used in practice induce lens distortion; the amount of distortion depends on the specific applications as well as the camera cost. Up to now, many methods of lens distortion correction have relied on invariant properties of projective geometry to find distortion parameters. A common property is "the straight line in scene is straight line in image". However, if the straight lines are also parallel together, the previous works have missed this restriction in determining lens distortion parameters. In this paper, we propose a method that leads to guarantee of the restrictions simultaneously for the determination. Therefore, corrected image will close to an ideal image taken by the pinhole camera model. The effectiveness of the proposed method is verified by our experiments on both synthetic images and real images.

A Study on the Buckling in Fillet Welds of Sheets (박판 필릿용접구조물의 좌굴변형에 관한 연구)

  • Chu, Hwan-Su;Cho, Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.27 no.3
    • /
    • pp.60-66
    • /
    • 2009
  • The structures distorted by welding have to be corrected. Since the correcting work needs a lot of costs and time, it is very important to minimize the buckling distortion due to welding of thin plate structure. Therefore the aim of this study is to investigate the effect of single bead on plate welding and fillet welding on the buckling distortion. In the single bead on plate welding, it was found that the welding speed and welding sequence were the most dominant factors on distortion. In the fillet welding, there were four typical buckling modes observed, and the welding sequence was the most influential factor on the buckling distortion. However typical distortion measuring method is not considered for the distortion correcting process costs of each buckling modes, therefore, in this study, the measuring method is developed to classify the buckling modes for torsion of specimen and buckling distortion depend on nodal point for the bead on plate welding specimen and fillet welds.