• Title/Summary/Keyword: distance vector

Search Result 676, Processing Time 0.029 seconds

Localization Algorithm for Wireless Sensor Networks Based on Modified Distance Estimation

  • Zhao, Liquan;Zhang, Kexin
    • Journal of Information Processing Systems
    • /
    • v.16 no.5
    • /
    • pp.1158-1168
    • /
    • 2020
  • The distance vector-hop wireless sensor node location method is one of typical range-free location methods. In distance vector-hop location method, if a wireless node A can directly communicate with wireless sensor network nodes B and C at its communication range, the hop count from wireless sensor nodes A to B is considered to be the same as that form wireless sensor nodes A to C. However, the real distance between wireless sensor nodes A and B may be dissimilar to that between wireless sensor nodes A and C. Therefore, there may be a discrepancy between the real distance and the estimated hop count distance, and this will affect wireless sensor node location error of distance vector-hop method. To overcome this problem, it proposes a wireless sensor network node location method by modifying the method of distance estimation in the distance vector-hop method. Firstly, we set three different communication powers for each node. Different hop counts correspond to different communication powers; and so this makes the corresponding relationship between the real distance and hop count more accurate, and also reduces the distance error between the real and estimated distance in wireless sensor network. Secondly, distance difference between the estimated distance between wireless sensor network anchor nodes and their corresponding real distance is computed. The average value of distance errors that is computed in the second step is used to modify the estimated distance from the wireless sensor network anchor node to the unknown sensor node. The improved node location method has smaller node location error than the distance vector-hop algorithm and other improved location methods, which is proved by simulations.

Durable Distance Vector Multicasting Protocol for Mobile Ad hoc Networks Based on Path-Durability (이동 애드혹 네트워크를 위한 경로 지속성을 고려한 거리벡터 멀티케스트 프로토콜)

  • Lee, Se-Young;Chang, Hyeong-Soo
    • Journal of KIISE:Information Networking
    • /
    • v.33 no.6
    • /
    • pp.461-472
    • /
    • 2006
  • In this paper, we propose a novel on-demand multicasting algorithm, 'Durable Distance Vector Multicasting(DDVM),' for Mobile Ad hoc Network(MANET). DDVM has a more efficient routing-control complexity than Link State Routing(LSR) and with the smaller complexity, DDVM provides a high delivery ratio for MANET with high mobility by adapting to dynamic topological changes. This is achieved by adding 'combined path durability' statistic into the routing-control information of Distance Vector Routing(DVR). The routing-path duration statistic is computed in a fully distributed manlier at each node in the network based on only local information from neighbour nodes. We show by simulation studies the effectiveness of DDVM compared with On-demand Multicast Routing Protocol(ODMRP).

A METHOD FOR ADJUSTING ADAPTIVELY THE WEIGHT OF FEATURE IN MULTI-DIMENSIONAL FEATURE VECTOR MATCHING

  • Ye, Chul-Soo
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.772-775
    • /
    • 2006
  • Muilti-dimensional feature vector matching algorithm uses multiple features such as intensity, gradient, variance, first or second derivative of a pixel to find correspondence pixels in stereo images. In this paper, we proposed a new method for adjusting automatically the weight of feature in multi-dimensional feature vector matching considering sharpeness of a pixel in feature vector distance curve. The sharpeness consists of minimum and maximum vector distances of a small window mask. In the experiment we used IKONOS satellite stereo imagery and obtained accurate matching results comparable to the manual weight-adjusting method.

  • PDF

A Study on the Optimal Mahalanobis Distance for Speech Recognition

  • Lee, Chang-Young
    • Speech Sciences
    • /
    • v.13 no.4
    • /
    • pp.177-186
    • /
    • 2006
  • In an effort to enhance the quality of feature vector classification and thereby reduce the recognition error rate of the speaker-independent speech recognition, we employ the Mahalanobis distance in the calculation of the similarity measure between feature vectors. It is assumed that the metric matrix of the Mahalanobis distance be diagonal for the sake of cost reduction in memory and time of calculation. We propose that the diagonal elements be given in terms of the variations of the feature vector components. Geometrically, this prescription tends to redistribute the set of data in the shape of a hypersphere in the feature vector space. The idea is applied to the speech recognition by hidden Markov model with fuzzy vector quantization. The result shows that the recognition is improved by an appropriate choice of the relevant adjustable parameter. The Viterbi score difference of the two winners in the recognition test shows that the general behavior is in accord with that of the recognition error rate.

  • PDF

Low-Complexity Design of Quantizers for Distributed Systems

  • Kim, Yoon Hak
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.3
    • /
    • pp.142-147
    • /
    • 2018
  • We present a practical design algorithm for quantizers at nodes in distributed systems in which each local measurement is quantized without communication between nodes and transmitted to a fusion node that conducts estimation of the parameter of interest. The benefits of vector quantization (VQ) motivate us to incorporate the VQ strategy into our design and we propose a low-complexity design technique that seeks to assign vector codewords into sets such that each codeword in the sets should be closest to its associated local codeword. In doing so, we introduce new distance metrics to measure the distance between vector codewords and local ones and construct the sets of vector codewords at each node to minimize the average distance, resulting in an efficient and independent encoding of the vector codewords. Through extensive experiments, we show that the proposed algorithm can maintain comparable performance with a substantially reduced design complexity.

An Approximate Euclidean Distance Calculation for Fast VQ Encoding

  • Baek, Seong-Joon;Kim, Jin-Young;Kang, Sang-Ki
    • Speech Sciences
    • /
    • v.11 no.2
    • /
    • pp.211-216
    • /
    • 2004
  • In this paper, we present a fast encoding algorithm for vector quantization with an approximate Euclidean distance calculation. An approximation is performed by converting floating point to the near integer. An inequality between the approximate Euclidean distance and the nearest distance is developed to avoid unnecessary distance calculations. Since the proposed algorithm rejects those codewords that are impossible to be the nearest codeword, it produces the same output as conventional full search algorithm.

  • PDF

Knowledge-Based Approach Using Support Vector Machine for Transmission Line Distance Relay Co-ordination

  • Ravikumar, B.;Thukaram, D.;Khincha, H.P.
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.3
    • /
    • pp.363-372
    • /
    • 2008
  • In this paper, knowledge-based approach using Support Vector Machines (SVMs) are used for estimating the coordinated zonal settings of a distance relay. The approach depends on the detailed simulation studies of apparent impedance loci as seen by distance relay during disturbance, considering various operating conditions including fault resistance. In a distance relay, the impedance loci given at the relay location is obtained from extensive transient stability studies. SVMs are used as a pattern classifier for obtaining distance relay co-ordination. The scheme utilizes the apparent impedance values observed during a fault as inputs. An improved performance with the use of SVMs, keeping the reach when faced with different fault conditions as well as system power flow changes, are illustrated with an equivalent 265 bus system of a practical Indian Western Grid.

경로 지속성을 고려한 Distance Vector 알고리즘 기반의 Ad hoc 네트워크 멀티캐스팅

  • Lee Se-young;Chang Hyeong Soo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11a
    • /
    • pp.307-309
    • /
    • 2005
  • 본 논문에서는 distance-vector 기반의 라우팅 알고리즘에 경로 지속성에 대한 분석을 적용한 Durable Distance Vector Multicast(DDVM) 알고리즘을 제안한다. DDVM은 기존의 distance vector 알고리즘에 PATHS의 분석 내용을 기반으로 한 경로 지속성 정보를 포함하여 견고한 멀티캐스팅 경로를 구성한다. 또한 경로 정보에 목적지까지의 세부적인 경로의 지속성 정보 역시 포함하여 멀티캐스팅 경로 형성의 실패율을 줄이고 보다 지속성 있는 경로를 멀티캐스팅 경로에 포함시킨다. 이러한 경로들을 통해 멀티캐스팅을 수행함으로서 high mobility 환경에서 기존의 알고리즘보다 높은 전송율을 보이며, 실험 결과를 통해 이를 확인할 수 있다.

  • PDF

AOZDV(Ad Hoc On-demand Zone and Distance-Vector) : A Routing Protocol with Novel Zone Mechanism in Wireless Ad hoc Networks (무선 Ad hoc 망의 새로운 Zone 기법을 적용한 AOZDV(Ad Hoc On-demand Zone and Distance-Vector) 라우팅 프로토콜)

  • Kim Yong-Woo;Choi Sung-Jae;Lee Hong-Ki;Song Joo-Seok
    • Journal of KIISE:Information Networking
    • /
    • v.33 no.4
    • /
    • pp.299-309
    • /
    • 2006
  • In Mobile ad hoc networks, AODV is one of the famous on-demand routing protocol, which use the routing tables in the nodes if possible, or Route Discovery Process (RDP) is triggered to find a new route. However increasing the traffic of RDP causes dropping of the network performance in the large size of ad hoc networks. In this paper, we propose a novel routing protocol, named as AOZDV (Ad hoc On-demand Zone and Distance-Vector Routing), which enhances the AODV protocol with zone routing. AOZDV creates a Zone with neighbor nodes of the source/destination using traffic and power information, and utilizes Destination-Vector Table for internal routing in the Zone. We show by simulations that AOZDV can reduce the occurrence rate of route fail and RDP caused by route fail compared to existing routing protocols such as DSR and AODV.

EMBEDDING DISTANCE GRAPHS IN FINITE FIELD VECTOR SPACES

  • Iosevich, Alex;Parshall, Hans
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.6
    • /
    • pp.1515-1528
    • /
    • 2019
  • We show that large subsets of vector spaces over finite fields determine certain point configurations with prescribed distance structure. More specifically, we consider the complete graph with vertices as the points of $A{\subseteq}F^d_q$ and edges assigned the algebraic distance between pairs of vertices. We prove nontrivial results on locating specified subgraphs of maximum vertex degree at most t in dimensions $d{\geq}2t$.