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EMBEDDING DISTANCE GRAPHS IN FINITE FIELD

VECTOR SPACES

Alex Iosevich and Hans Parshall

Abstract. We show that large subsets of vector spaces over finite fields
determine certain point configurations with prescribed distance structure.
More specifically, we consider the complete graph with vertices as the

points of A ⊆ Fd
q and edges assigned the algebraic distance between pairs

of vertices. We prove nontrivial results on locating specified subgraphs of

maximum vertex degree at most t in dimensions d ≥ 2t.

1. Introduction

The famous Erdős and Falconer distance problems aim to quantify the
extent to which large sets must determine many distances. A near optimal
result on the planar Erdős distinct distance problem was established by Guth
and Katz [10], who showed that every set of N points in R2 determines at
least a constant multiple of N

log(N) distinct distances. However, even in the

Euclidean plane, the Falconer distance problem continues to present a gap in
our understanding of distance sets. Falconer [7] proved that when the Hausdorff
dimension of compact A ⊆ Rd is large, specifically dim(A) > d+1

2 , the distance
set {|x− y| : x, y ∈ A} ⊆ R must have positive Lebesgue measure. Wolff [19]
in dimension d = 2 and Erdoğan [6] in dimensions d ≥ 3 established the same
conclusion with the weaker hypothesis of dim(A) > d

2 + 1
3 . Falconer conjectures

that this can be relaxed further to dim(A) > d
2 , which would be optimal.

Recent significant progress in the plane by Guth, the first listed author, Ou,
and Wang [9] improves Wolff’s result to allow for dim(A) > 5/4.

More generally, many authors have considered the related problem of locating
point configurations with prescribed metric structure within subsets A ⊆ Rd of
large Hausdorff dimension. For instance, one result in this direction of Bennett,
the first listed author and Taylor [3, Theorem 1.7] implies:
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Theorem 1 ([3]). For d ≥ 2, let A ⊆ Rd be compact with dim(A) > d+1
2 . For

any k ∈ N, there exists an open interval (a, b) ⊂ R where for every λ ∈ (a, b),
there exist distinct x0, . . . , xk ∈ A with |xj+1 − xj | = λ for 0 ≤ j < k.

One can interpret this statement in terms of equilateral Euclidean distance
graphs Gλ(A), defined for A ⊆ Rd and λ ∈ R, where we consider the points of
A as vertices and connect every pair of points x, y ∈ A with an edge exactly
when |x− y| = λ. With this notion, Theorem 1 states that for every compact
A ⊆ Rd with dim(A) > d+1

2 and for arbitrarily large k ∈ N, there exists an
open interval of distances λ ∈ R for which Gλ(A) contains a path of length k.
Under the stronger hypothesis dim(A) > d+3

2 , Greenleaf, the first listed author
and Pramanik [8] demonstrate an open interval of distances λ ∈ R for which
Gλ(A) contains cycles of length 2k. Positive results for cycles of length 3 within
Gλ(A) in R4, corresponding to the vertices of equilateral triangles, were recently
obtained [11], but there seems to be a gap in the literature for the general case
of arbitrarily long odd length cycles with equilateral edge lengths. Additional
results on locating more general distance graph structure within sets of large
Hausdorff dimension have been obtained by Chatzikonstantinou, the first listed
author, Mkrtchyan and Pakianathan [5].

Our goal here is to illustrate a related approach for locating distance graph
structure within large subsets of Fdq , the vector space of dimension d over a

finite field with odd characteristic. For v, w ∈ Fdq , we consider their usual dot
product

v · w :=

d∑
j=1

vjwj

and refer to |v|2 := v · v as the length of v and |v −w|2 as the distance between
v and w. While this notion of distance is certainly not a metric, this setup
provides a useful model setting for the Falconer distance problem and its
variants. For instance, the first listed author and Rudnev [12] demonstrated

that every A ⊆ Fdq with |A| > 2q
d+1
2 determines all distances, in the sense that

{|x − y|2 : x, y ∈ A} = Fq. An analogue to Wolff’s result in this setting was
first achieved by Chapman, Erdoğan, Hart, the first listed author and Koh [4],
who showed that when q ≡ 3 mod 4, every A ⊆ F2

q with |A| ≥ q4/3 determines
at least a constant proportion of q distances. This was shown to further hold
when q ≡ 1 mod 4 by Bennett, Hart, the first listed author, Pakianathan and
Rudnev [2] through a group action method. Analogous problems for locating
point configurations with prescribed distance structure have been studied by
several authors. Many of these results show that large sets determine isometric
copies of a positive proportion of a class of point configurations (for instance,
[2, 4]), but here we will show that large sets determine isometric copies of all
point configurations of a fixed class (as was done in [15,16]).

We find it convenient to organize distance structure within subsets A ⊆ Fdq
in the language of graph theory. We call a graph G = (V,E) a distance graph
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when to each edge e ∈ E there is some associated nonzero length λe ∈ F∗q . We

call X ⊆ Fdq an isometric copy of G when there exists a distance preserving
bijection ϕ : V → X where for every v, w ∈ V connected by an edge e ∈ E,
|ϕ(v)− ϕ(w)|2 = λe. Our main result is the following.

Theorem 2. Let n, t ∈ N, and let A ⊆ Fdq with |A| ≥ 12n2q
d−1
2 +t. Then A

contains an isometric copy of every distance graph with n vertices and maximum
vertex degree t.

The main analytic input into Theorem 2 is Theorem 4 below. An interested
reader can check that the “distance” function | · |2 can be replaced by any
non-degenerate quadratic form using the results of [12] and [2]. We stick to the
“Euclidean distance” in this context for the sake of notational clarity.

Theorem 2 allows us to locate arbitrarily large configurations of maximum
degree t within large subsets of F2t

q provided q is taken sufficiently large with
respect to the desired number of vertices n. For instance, we recover nontrivial
results for locating all cycle graphs of length n in dimensions d ≥ 4, which is
new. Previous results of this type typically require the dimension d of Fdq to
depend on the number of sought after vertices. Vinh [16] has proven that for

a constant C depending only upon n, if A ⊆ Fdq with |A| > Cq
d−3
2 +n, then

A contains an isometric copy of every complete distance graph on n vertices.
While our methods differ, Theorem 2 recovers Vinh’s exponent of d−3

2 + n
for complete graphs on n vertices. Vinh’s result yields a nontrivial exponent
for every distance graph by considering an embedding into a complete graph.
Theorem 2 yields an improvement over this exponent whenever the maximum
degree t is strictly less than n−1. It is also worth comparing with another result
of Vinh [17, Theorem 2.25], which immediately implies a version of Theorem 2
accounting for almost all distance graphs, i.e., a positive proportion approaching
1 as q →∞, with the same exponent. Our result improves this to recovering
all distance graphs.

There are two cases where Theorem 2 does not even meet the quantitative
information provided by previous similar results. Bennett et al. [1] showed that

if A ⊆ Fdq with |A| > 4(n+ 1)q
d+1
2 , then A contains an isometric copy of every

path with n vertices. This is nontrivial in dimensions d ≥ 2, while applying
Theorem 2 for paths is unfortunately only nontrivial for d ≥ 4. A more careful
application of our methods yields a result for paths in dimensions d ≥ 3, but
we do not pursue this. Additionally, the second listed author [15] has proven
results for complete graphs on n vertices that are nontrivial in dimensions d ≥ n
provided one is willing to impose technical conditions on the edge distances; we
instead opt for a result uniform in nonzero edge distances.

Our strategy is to proceed by an edge deletion induction. This relies on a
functional distance counting theorem, Theorem 4, which previously appeared
in the work of Bennett et al. [1]. As this is our main tool, we record its proof
after setting notation and recalling some facts about exponential sums over
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finite fields. Before proving a more quantitative form of Theorem 2 in the final
section, we demonstrate our method with the small case of equilateral triangles;
this helps to highlight why our methods are constrained by the maximum vertex
degree.

2. Preliminaries

Let χ : Fq → C denote the canonical additive character. More precisely, if
p is the characteristic of Fq and Tr : Fq → Fp is the usual trace function, we
define for a ∈ Fq

χ(a) := exp
(2πiTr(a)

p

)
.

We find it convenient to use averaging notation for f : Fdq → C of

Exf(x) := q−d
∑
x∈Fd

q

f(x),

and we will condense multiple averages Ex1
Ex2
· · ·Exn

as Ex1,x2,...,xn
. With

this notation, the familiar orthogonality relation for χ and y ∈ Fdq takes the
form

Exχ(x · y) =

{
1 if y = 0,

0 if y ∈ Fdq \ {0}.

For λ ∈ Fq, x ∈ Fdq we define the normalized indicator function

σλ(x) :=

{
q if |x|2 = λ,

0 otherwise.

This plays the role of the surface measure of the sphere of radius λ. For
convenience we perform the standard calculation that shows σλ is essentially
L1-normalized, with error tending to zero as q →∞ provided d ≥ 2.

Lemma 3. For any λ ∈ F∗q ,

(1) |Exσλ(x)− 1| ≤ q−
d−1
2 .

Proof. By orthogonality, we have

Exσλ(x) = Ex
∑
`∈Fq

χ(`|x|2 − `λ)

=
∑
`∈Fq

χ(−`λ)Exχ(`|x|2)

= 1 +
∑
`∈F∗

q

χ(−`λ)Exχ(`|x|2).
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Introducing the quadratic character η : F∗q → {−1, 1} defined for a ∈ F∗q by

η(a) :=

{
1 if a is a square in F∗q ,

−1 otherwise,

and the Gaussian sum

G(χ, η) :=
∑
a∈F∗

q

χ(a)η(a),

it follows from [14, Theorem 5.33] that we have

Exχ(`|x|2) = q−dG(χ, η)dη(`)d.

Together with our computation above,

|Exσλ(x)− 1| ≤ q−d|G(χ, η)|d
∣∣∣ ∑
`∈F∗

q

χ(−`λ)η(`)d
∣∣∣.

As λ ∈ F∗q , we can reindex in ` for

|Exσλ(x)− 1| ≤ q−d|G(χ, η)|d
∣∣∣ ∑
`∈F∗

q

χ(`)η(`)d
∣∣∣.

It is not hard [14, Theorem 5.15] to show |G(χ, η)| = q1/2. When d is even, the
sum in ` amounts to −1 (by orthogonality of χ), and when d is odd, the sum in
` contributes another Gaussian sum. That is, we could slightly improve (1) in
even dimensions; in any case we can conclude (1). �

3. A functional distance theorem

The first listed author and Rudnev [12] showed not only that large sets
determine all distances, but that distances within large subsets equidistribute.
We will use a functional version of their result, which appears in the work of
Bennett et al. [1, Theorem 2.1]. More precisely, with the L2 norm of f : Fdq → C
normalized as

‖f‖2 :=
(
Ex|f(x)|2

)1/2
,

our main distance counting tool is the following.

Theorem 4 ([1]). For any f, g : Fdq → C and λ ∈ F∗q ,∣∣∣Ex,yf(x)g(y)σλ(x− y)−Exf(x)Eyg(y)
∣∣∣ ≤ 2q−

d−1
2 ‖f‖2‖g‖2.

In order to include the proof of Theorem 4, we recall some Fourier analytic

facts here. The Fourier transform f̂ : Fdq → C for f : Fdq → C is defined for

ξ ∈ Fdq by

f̂(ξ) = Exf(x)χ(x · ξ).
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The orthogonality of χ allows one to quickly conclude the Fourier inversion
formula

f(x) =
∑
ξ∈Fd

q

f̂(ξ)χ(−x · ξ)

and the Plancherel identity

Ex|f(x)|2 =
∑
ξ∈Fd

q

|f̂(ξ)|2.

While Lemma 3 relied only on Gaussian sums, Theorem 4 relies on more delicate
cancellation. To be precise, for a, b ∈ Fq let us define the Kloosterman sum

K(a, b) :=
∑
`∈F∗

q

χ
(
as+

b

s

)
and the Salié sum

S(a, b) :=
∑
`∈F∗

q

χ
(
as+

b

s

)
η(s).

If either a or b is nonzero, both bounds |S(a, b)| ≤ 2
√
q and |K(a, b)| ≤ 2

√
q are

well-known; see, for instance, [13]. These bounds are somewhat more involved
than showing |G(χ, η)| = q1/2. While the Salié sum can indeed be related back
to a Gaussian sum, the Kloosterman sum bound relies on the fundamental work
of Weil [18]. With these bounds, we are ready to prove the functional distance
theorem.

Proof of Theorem 4. Proceeding as in Lemma 3, we apply orthogonality for

Ex,yf(x)g(x+ y)σλ(y)

= Ex,yf(x)g(x+ y)
∑
`∈Fq

χ(`|y|2)

= Exf(x)Eyg(y) +
∑
`∈F∗

q

χ(−`λ)Eyχ(`|y|2)Exf(x)g(x+ y).

Applying Fourier inversion,

Exf(x)g(x+ y) =
∑
ξ∈Fd

q

f̂(ξ)ĝ(−ξ)χ(y · ξ),

so we have shown

Ex,yf(x)g(x+ y)σλ(y)−Exf(x)Eyg(y)

=
∑
ξ∈Fd

q

f̂(ξ)ĝ(−ξ)
∑
`∈F∗

q

χ(−`λ)Eyχ(`|y|2 + y · ξ).

By [14, Theorem 5.33],

Eyχ(`|y|2 + y · ξ) = q−dG(χ, η)dχ
(
− |ξ|

2

4`

)
η(`)d
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which we combine with our previous work to obtain∣∣∣Ex,yf(x)g(x+ y)σλ(y)−Exf(x)Eyg(y)
∣∣∣

≤ q−d/2
∑
ξ∈Fd

q

|f̂(ξ)||ĝ(−ξ)|
∣∣∣ ∑
`∈F∗

q

χ
(
− `λ− |ξ|

2

4`

)
η(`)d

∣∣∣.
As λ 6= 0, we can recognize the sum in ` as either a Kloosterman sum (when d
is even) or a Salié sum (when d is odd) and arrive at∣∣∣Ex,yf(x)g(x+ y)σλ(y)−Exf(x)Eyg(y)

∣∣∣ ≤ 2q−
d−1
2

∑
ξ∈Fd

q

|f̂(ξ)||ĝ(−ξ)|.

Applying Cauchy-Schwarz and Plancherel,∑
ξ∈Fd

q

|f̂(ξ)||ĝ(−ξ)| ≤ ‖f‖2‖g‖2,

completing the proof. �

4. Equilateral triangles

The rough plan is to argue that a properly normalized count of isometric
copies of a particular graph G within sufficiently large subset A ⊆ Fdq is roughly
equal to a properly normalized count of isometric copies of the subgraph of G
formed by deleting an edge. We will illustrate our approach through the small
example of counting equilateral triangles, by which we mean complete graphs on
3 vertices that are connected by edges of the same length. This will amount to
a total of three edge deletions, see the figure, and each edge deletion requires an
application of Theorem 4, resulting in an error term. Provided we can keep the
sum of these error terms under control, we will find ourselves counting points
in A with no distance restrictions at all.

Proposition 5. Let λ ∈ F∗q , A ⊆ Fdq with |A| = αqd and α ≥ 24q2−
d+1
2 . Then

(2) Ex,y,z1A(x)1A(y)1A(z)σλ(x− y)σλ(x− z)σλ(y − z) ≥ 1

2
α3.

Proof. Set fx(y) = 1A(y)σλ(x− y). Applying Theorem 4 for a fixed x,

|Ey,zfx(y)fx(z)σλ(y − z)−Eyfx(y)Ezfx(z)| ≤ 2q
1−d
2 ‖fx‖22.

Note that fx is not L2-normalized, so we pick up an extra factor of q. That is,

‖fx‖22 = Ey1A(y)σλ(x− y)2

= qEyfx(y).

Averaging over potential vertices x in A and applying the triangle inequality,
we see

|Ex,y,z1A(x)fx(y)fx(z)σλ(y − z)−Ex,y,z1A(x)fx(y)fx(z)|

≤ 2q
3−d
2 Ex1A(x)Eyfx(y).
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Recall fx(y) = 1A(y)σλ(x− y). Since α is not too small, Theorem 4 tells us

Ex1A(x)1A(y)σλ(x− y) ≤ 2α2.

Combining this with our assumption that α is not too small, we have shown

|Ex,y,z1A(x)fx(y)fx(z)σλ3
(y − z)−Ex,y,z1A(x)fx(y)fx(z)| ≤ 1

6
α3.

What we have done so far is to show that the normalized count of equilateral
triangles within A, {x, y, z} ⊆ A each of distance λ from each other, is roughly
equal to the normalized count of paths of length 2 within A, {x, y, z} ⊆ A where
both y and z are distant λ from x, where the error amounts to a small constant
proportion of the expected count of α3. In other words, by deleting an edge
length from our desired configuration and counting the resulting configurations,
we are still counting a positive proportion of the expected number of desired
configurations.

We now aim to delete another edge to estimate Ex,y,z1A(x)1A(y)σλ(x −
y)1A(z)σλ(x − z). Continuing with the notation fz(x) = 1A(x)σλ(x − z), we
apply Theorem 4 for a fixed z to obtain

|Ex,yfz(x)1A(y)σλ(x− y)− αExfz(x)| ≤ 2α1/2q
1−d
2 ‖fz‖2.

Averaging over potential vertices z in A and applying the triangle inequality,

|Ex,y,zfz(x)1A(y)1A(z)σλ(x−y)−αEx,zfz(x)1A(z)| ≤ 2α1/2q
1−d
2 Ez1A(z)‖fz‖2.

Applying Cauchy-Schwarz,

Ez1A(z)‖fz‖2 ≤ α1/2Ez1A(z)‖fz‖22
= α1/2q1/2(Ex,z1A(x)1A(z)σλ(x− z))1/2

≤ 2α3/2q1/2,

where again we have used that α is not too small to productively apply Theo-
rem 4. In total,

|Ex,y,zfz(x)1A(y)1A(z)σλ(x− y)− αEx,zfz(x)1A(z)| ≤ 4α2q
2−d
2 ,

where the error here is smaller than our previous error by a factor of q. In
particular,

|Ex,y,z1A(x)1A(y)1A(z)σλ(x− y)σλ(x− z)σλ(y − z)

− αEx,z1A(x)1A(z)σλ(x− z)| ≤ 1

3
α3.

We have now reduced the problem of counting equilateral triangles of side length
λ within A to the problem of counting pairs of points of distance λ apart within
A, which is exactly what Theorem 4 does for us. As α is not too small,

|Ex,z1A(x)1A(z)σλ(x− z)− α2| ≤ 2αq
1−d
2
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Figure 1. Each application of Theorem 4 deletes an edge to
count simpler configurations.

which together with the previous reductions leads quickly to

|Ex,y,z1A(x)1A(y)1A(z)σλ(x− y)σλ(x− z)σλ(y − z)− α3| ≤ 1

2
α3,

from which (2) follows immediately. �

In the argument above, deleting an edge via Theorem 4 allowed us to count
simpler configurations at the price of including additional error resulting from
our functions fx not being L2-normalized. This is the heart of our argument,
and the rest is essentially bookkeeping. The quality of the error terms in each
edge deletion above depended only upon the degrees of the vertices at the end
of the chosen edge. This should give some hope that for counting cycles of
length n, we may have to sum more error terms (an amount depending upon

n), but each power of q appearing is at worst q
3−d
2 . Roughly, as we proceed

through the general argument in the next section, we will see that deleting
an edge between two vertices of degree at most t amounts to increasing the

q
1−d
2 factor appearing in the error from Theorem 4 to a factor of qt+

1−d
2 . This

accounts for the necessary size constraint imposed on α. It should be believable
that the restriction to equilateral configurations, while conceptually convenient,
is not particularly important since we delete one edge at a time.

It is reasonable to worry that Proposition 5 does not guarantee us three
distinct points {x, y, z} ⊆ A forming the desired triangle; this is required to make
any conclusion about A containing an isometric copy of a complete graph on 3
vertices with 3 edge lengths of λ. It is not terribly surprising that coincidences
between these vertices amount to a well-controlled error term, and we make
this precise at the end of the next section in the general case.

5. Edge deletion induction

We now establish our main theorem. For the remainder we will consider
distance graphs G with vertices labeled as V = {v1, . . . , vn} and when vi is
adjacent to vj we label their common edge ei,j . Recall that to each such edge
we have a distance λei,j ∈ F∗q . As in the simple example in the previous section,
we will apply Theorem 4 to delete a single distance constraint, an edge length,
and consider the resulting subgraph. We find it convenient to introduce the
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shorthand for x ∈ Fdq of

σi,j(x) :=

{
σλei,j

(x) if vi and vj are adjacent,

1 otherwise,

to compactly for A ⊆ Fdq the count of

(3) NG(A) := Ex1,...,xn

n∏
i=1

1A(xi)

n∏
j=i+1

σi,j(xi − xj).

This is almost a normalized count for the number of (ordered) isometric copies
of G appearing within A. The only difference is the additional contribution
from degenerate configurations that occur when some of the non-adjacent xi
coincide. We will account for this contribution at the end of the section. Our
main asymptotic here is:

Theorem 6. Let G = (V,E) be a distance graph with n vertices, m edges, and
maximum degree t. Let A ⊆ Fdq with |A| = αqd and

(4) α ≥ 4mqt−
d+1
2 .

Then

(5)
∣∣∣NG(A)− αn

∣∣∣ ≤ 4mαn−1qt−
d+1
2 .

Proof. We proceed by induction on the number of edges, m. In the case m = 1,
note the maximum degree is t = 1 and we may as well assume we only have
n = 2 vertices, since each isolated vertex contributes a factor of α to NG(A).
Then (5) is actually weaker by a constant factor than the content of Theorem 4
applied with f = g = 1A, so we have one base case already established.

We assume that the theorem has been established for graphs with at most
m − 1 edges. It is obvious, but crucial for us, that the maximum degree of
subgraphs of G remains at most t so that we can proceed to apply (5) to the
subgraph of G formed by removing an edge. For notational convenience, there
is no harm in assuming that v1 and v2 are adjacent. Set

f(x1) := 1A(x1)
n∏
j=3

σ1,j(x1 − xj),

and, for 2 ≤ i ≤ n,

gi(xi) := 1A(xi)

n∏
j=i+1

σi,j(xi − xj).

Note that f and the gi together account for all edges of G except for e1,2, which
we will be deleting. With this notation, we can rearrange our count (3) as

(6) NG(A) = Ex3,...,xn

n∏
i=3

gi(xi)Ex1,x2
f(x1)g2(x2)σ1,2(x1 − x2).
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Applying Theorem 4 to the inner average,

(7) Ex1,x2f(x1)g2(x2)σ1,2(x1 − x2) = Ex1f(x1)Ex2g2(x2) + E ,

where

|E| ≤ 2q
1−d
2 ‖f‖2‖g2‖2.

Since f and g2 amount to normalized indicator functions, we can essentially
replace these L2 norms with simple averages provided we are careful about
normalization. Since they each account for at most t− 1 edges, we have

‖f‖22 = Ex1
f(x1)2

≤ qt−1Ex1f(x1)

and similarly ‖g2‖22 ≤ qt−1Ex2g(x2). Hence,

|E| ≤ 2qt−
d+1
2

(
Ex1

f(x1)
)1/2(

Ex2
g(x2)

)1/2
.

Together with (6) and (7), we see∣∣∣NG(A)−Ex1,...,xn
f(x1)

n∏
i=2

gi(xi)
∣∣∣ ≤ 2qt−

d+1
2 Ex3,...,xn

n∏
i=3

gi(xi)‖f‖1/21 ‖g2‖
1/2
1 .

This essentially says that, up to an error, the count for copies of G within A is
the same as that for the subgraph of G formed by deleting the edge e1,2. We
invoke our induction hypothesis to observe∣∣∣Ex1,...,xn

f(x1)

n∏
i=2

gi(xi)− αn
∣∣∣ ≤ 4(m− 1)αn−1qt−

d+1
2 ,

in which case we have shown

(8)

∣∣∣NG(A)− αn
∣∣∣

≤ 4(m− 1)αn−1qt−
d+1
2 + 2qt−

d+1
2 Ex3,...,xn

n∏
i=3

gi(xi)‖f‖1/21 ‖g2‖
1/2
1 .

Now we need only show that we can bring these two error terms in line. Applying
Cauchy-Schwarz,

Ex3,...,xn

n∏
i=3

fi(xi)‖f‖1/21 ‖g2‖
1/2
1

≤
(
Ex3,...,xn

n∏
i=3

gi(xi)
)1/2(

Ex1,...,xnf(x1)

n∏
i=2

gi(xi)
)1/2

.

By our induction hypothesis, and our assumption that α is not too small, we
have both

Ex3,...,xn

n∏
i=3

gi(xi) ≤ 2αn−2, and



1526 A. IOSEVICH AND H. PARSHALL

Ex1,...,xnf(x1)

n∏
i=2

gi(xi) ≤ 2αn.

In particular, together with (8), this allows us to conclude (5) as desired. �

To extract Theorem 2, we must argue that at least one of the many con-
figurations counted by NG(A) is genuine, in the sense that it is made up of
distinct vertices. As one might expect, we will in fact show that when A is large
enough, many of these configurations are genuine. Note that Theorem 2 follows
immediately from the following.

Theorem 7. Let n, t ∈ N and let A ⊆ Fdq with |A| = αqd with α ≥ 12n2qt−
d+1
2 .

Then A contains at least 1
2 |A|

nq−m isometric copies of every distance graph
with n vertices, m edges, and maximum vertex degree t.

Proof. Let G be a distance graph with n vertices, m edges, and maximum vertex
degree t with the same labeling scheme as before. We introduce the restricted
average

E∗x1,...,xn
:= q−nd

∑
x1,...,xn∈Fd

q

x1,...,xn distinct

and consider

N ∗G (A) := E∗x1,...,xn

n∏
i=1

1A(xi)

n∏
j=i+1

σi,j(xi − xj),

which only counts genuine isometric copies of G appearing within A. If we are
considering a configuration within A that is detected by NG , but not by N ∗G (A),
then some vertices coincide. We will show that the contribution when xn is
equal to one of x1, . . . , xn−1, the contribution is negligible. In particular, we
will bound

En := Ex1,...,xn−1

n−1∏
i=1

1A(xi)

n−1∏
j=i+1

σi,j(xi − xj)q−d

∑
xn∈{x1,...,xn−1}

1A(xn)
n−1∏
i=1

σi,n(xi − xn).

Of course, we can express this as

En = q−dEx1,...,xn−1

n−1∏
i=1

1A(xi)

n−1∏
j=i+1

σi,j(xi − xj)
n−1∑
j=1

n−1∏
i=1

σi,n(xi − xj).

When the innermost sum is nonzero, its contribution is at least bounded by
(n− 1)qt, since vn has degree at most t. As we are assuming α is not too small,
we can invoke Theorem 6 to conclude

En ≤ 2(n− 1)αn−1qt−d.
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Applying a symmetric argument for coincidences involving vertices other than
xn, we have shown

|NG(A)−N ∗G (A)| ≤ 2n2αn−1qt−d.

Combining this with Theorem 6 with our size requirement on α yields

|N ∗G (A)− αn| ≤ 6n2αn−1qt−
d+1
2

which implies that N ∗G (A) ≥ 1
2α

n. The result follows by then clearing normal-
izations. �
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[4] J. Chapman, M. B. Erdoğan, D. Hart, A. Iosevich, and D. Koh, Pinned distance sets,

k-simplices, Wolff’s exponent in finite fields and sum-product estimates, Math. Z. 271

(2012), no. 1-2, 63–93. https://doi.org/10.1007/s00209-011-0852-4
[5] N. Chatzikonstantinou, A. Iosevich, S. Mkrtchyan, and J. Pakianathan, Rigidity, graphs

and Hausdorff dimension, arXiv preprint arXiv:1708.05919 (2017).

[6] M. B. Erdog̃an, A bilinear Fourier extension theorem and applications to the distance
set problem, Int. Math. Res. Not. 2005 (2005), no. 23, 1411–1425. https://doi.org/10.

1155/IMRN.2005.1411

[7] K. J. Falconer, On the Hausdorff dimensions of distance sets, Mathematika 32 (1985),
no. 2, 206–212 (1986). https://doi.org/10.1112/S0025579300010998

[8] A. Greenleaf, A. Iosevich, and M. Pramanik, On necklaces inside thin subsets of Rd, Math.

Res. Lett. 24 (2017), no. 2, 347–362. https://doi.org/10.4310/MRL.2017.v24.n2.a4
[9] L. Guth, A. Iosevich, Y. Ou, and H. Wang, On Falconer’s distance set problem in the

plane, arXiv preprint arXiv:1808.09346 (2018).
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