This paper reads Mary Shelley's Frankenstein (1818) in light of the 18th-century understanding of 'sympathy' including those of Hume and Smith and also in light of what Michael Hardt in our century has called "affective labor." I argue that the imaginative capacity and "seeing" are crucial in understanding Smith's idea of 'sympathy.' By showing how the monster's ugliness precludes any human character from sympathizing with him, Mary Shelley exposes that Smith's idea of sympathy fails to maintain social harmony. Mary Shelley revises Smith's 'sympathy' and makes it more radical by suggesting that the active affective labor could bridge the epistemological distance lying between the agent concerned and the impartial spectator. I first read Smith's idea of sympathy as an imaginative capacity which is inevitably influenced by 'seeing' and visual perception. Then I analyze the scenes in which the creature in Frankenstein fails to acquire any human sympathy due to his ugliness, and show how the specular nature of 'sympathy' is disrupted when one party is visually ugly and deformed. I conclude that affective labor and active moral reflection on the part of the spectator need to be provided when the agent concerned is 'ugly' and thus challenges our habitual epistemological boundary. Shelley's re-evaluation of Smith's sympathy, thus, suggests that affective labor may not be something that women alone have to perform, but an ethical practice that concerns all human beings and that can transform the otherwise flawed human capacity for sympathy.
Most factories deal with toxic or flammable chemicals in their industrial processes. These hazardous substances pose a risk of leakage due to accidents, such as fire and explosion. In the event of chemical release, massive casualties and property damage can result; hence, quantitative risk prediction and assessment are necessary. Several methods are available for evaluating chemical dispersion in the atmosphere, and most analyses are considered neutral in dispersion models and under far-field wind condition. The foregoing assumption renders a model valid only after a considerable time has elapsed from the moment chemicals are released or dispersed from a source. Hence, an initial dispersion model is required to assess risk quantitatively and predict the extent of damage because the most dangerous locations are those near a leak source. In this study, the dispersion model for initial consequence analysis was developed with three-dimensional unsteady advective diffusion equation. In this expression, instantaneous leakage is assumed as a puff, and wind velocity is considered as a coordinate transform in the solution. To minimize the buoyant force, ethane is used as leaked fuel, and two different diffusion coefficients are introduced. The calculated concentration field with a molecular diffusion coefficient shows a moving circular iso-line in the horizontal plane. The maximum concentration decreases as time progresses and distance increases. In the case of using a coefficient for turbulent diffusion, the dispersion along the wind velocity direction is enhanced, and an elliptic iso-contour line is found. The result yielded by a widely used commercial program, ALOHA, was compared with the end point of the lower explosion limit. In the future, we plan to build a more accurate and general initial risk assessment model by considering the turbulence diffusion and buoyancy effect on dispersion.
This paper is a study on context-sensitive spelling error correction and uses the Korean WordNet (KorLex)[1] that defines the relationship between words as a graph to improve the performance of the correction[2] based on the vector information of the word embedded in the correction technique. The Korean WordNet replaced WordNet[3] developed at Princeton University in the United States and was additionally constructed for Korean. In order to learn a semantic network in graph form or to use it for learned vector information, it is necessary to transform it into a vector form by embedding learning. For transformation, we list the nodes (limited number) in a line format like a sentence in a graph in the form of a network before the training input. One of the learning techniques that use this strategy is Deepwalk[4]. DeepWalk is used to learn graphs between words in the Korean WordNet. The graph embedding information is used in concatenation with the word vector information of the learned language model for correction, and the final correction word is determined by the cosine distance value between the vectors. In this paper, In order to test whether the information of graph embedding affects the improvement of the performance of context- sensitive spelling error correction, a confused word pair was constructed and tested from the perspective of Word Sense Disambiguation(WSD). In the experimental results, the average correction performance of all confused word pairs was improved by 2.24% compared to the baseline correction performance.
In this study an efficient method for detecting and monitoring engine misfiring, focusing on minute speed changes in the crankshaft is proposed., Its validity is verified using various misfiring cases. Typically, the crankshaft speed fluctuates around the normal value depending on the engine misfiring status. Even a minute speed change in the crankshaft can be estimated by measuring the rotation time of each tooth of the 118-tooth flywheel attached to the crankshaft with a 2-MHz timer. Therefore, a speed pattern for an in-line six-cylinder engine consists of 236 tooth rotation speeds corresponding to the two rotations of the crankshaft, in which all the cylinders complete four-stroke cycle. FFT analysis can reduce the number of components of a speed pattern from 236 to just four major components: - fundamental frequency_(f), 2f, 3f, 6f., - This makes the comparison of the misfiring cases simpler and faster. In the experiment, five engine status cases (one normal firing and, four misfiring cases) were simulated. While the 6f component was the largest for the normal case, the f component increased as misfiring occurred one, two apart, and two consecutive times. The 3D FFT pattern comprising the ratio of f, 2f, and 3f, 6f showed that the distance between the misfiring and normal states was larger
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권9호
/
pp.2991-3007
/
2022
Two dimensional locality preserving projections (2D-LPP) is an improved algorithm of 2D image to solve the small sample size (SSS) problems which locality preserving projections (LPP) meets. It's able to find the low dimension manifold mapping that not only preserves local information but also detects manifold embedded in original data spaces. However, 2D-LPP is simple and elegant. So, inspired by the comparison experiments between two dimensional linear discriminant analysis (2D-LDA) and linear discriminant analysis (LDA) which indicated that matrix based methods don't always perform better even when training samples are limited, we surmise 2D-LPP may meet the same limitation as 2D-LDA and propose a novel matrix exponential method to enhance the performance of 2D-LPP. 2D-MELPP is equivalent to employing distance diffusion mapping to transform original images into a new space, and margins between labels are broadened, which is beneficial for solving classification problems. Nonetheless, the computational time complexity of 2D-MELPP is extremely high. In this paper, we replace some of matrix multiplications with multiple multiplications to save the memory cost and provide an efficient way for solving 2D-MELPP. We test it on public databases: random 3D data set, ORL, AR face database and Polyu Palmprint database and compare it with other 2D methods like 2D-LDA, 2D-LPP and 1D methods like LPP and exponential locality preserving projections (ELPP), finding it outperforms than others in recognition accuracy. We also compare different dimensions of projection vector and record the cost time on the ORL, AR face database and Polyu Palmprint database. The experiment results above proves that our advanced algorithm has a better performance on 3 independent public databases.
클러스터링은 데이터의 정답값(실제값)이 없는 데이터를 기반으로 데이터의 특징벡터의 거리 기반 등으로 군집화를 하는 비지도학습 방법이다. 이 방법은 이미지, 텍스트, 음성 등 다양한 데이터에 대해서 라벨링이 없이 적용할 수 있다는 장점이 있다. 기존 클러스터링을 하기 위해 차원축소 기법을 적용하거나 특정 특징만을 추출하여 군집화하는 방법이 적용되었다. 하지만 딥러닝 기반 모델이 발전하면서 입력 데이터를 잠재 벡터로 표현하는 오토인코더, 생성 적대적 네트워크 등을 통해서 딥 클러스터링의 기술이 연구가 되고 있다. 본 연구에서, 딥러닝 기반의 딥 클러스터링 기법을 제안하였다. 이 방법에서 오토인코더를 이용하여 입력 데이터를 잠재 벡터로 변환하고 이 잠재 벡터를 클러스터 구조에 맞게 벡터 공간을 구성 및 k-평균 클러스터링을 하였다. 실험 환경으로 pytorch 머신러닝 라이브러리를 이용하여 데이터셋으로 MNIST와 Fashion-MNIST을 적용하였다. 모델로는 컨볼루션 신경망 기반인 오토인코더 모델을 사용하였다. 실험결과로 k가 10일 때, MNIST에 대해서 89.42% 정확도를 가졌으며 Fashion-MNIST에 대해서 56.64% 정확도를 가진다.
Aljawhara H. Almuqrin;M.I. Sayyed;Ashok Kumar;U. Rilwan
Nuclear Engineering and Technology
/
제56권7호
/
pp.2842-2849
/
2024
The amorphous glasses containing PbO, ZnO, MgO, and B2O3 have been fabricated using the melt quenching technique. The structural properties have been analysed using the Fourier-transform infrared (FTIR) and Raman spectroscopy. Derivative of Absorption Spectra Fitting (DASF) method have been used to estimate the band gap energy from the UV-Vis absorption data which decreases from 3.02 eV to 2.66 eV with increasing the concentration of the PbO.The four glass samples 0.284 and 0.826 MeV showed unique variations in terms of gamma attenuation ability. LZMB4 glass sample proved to be the mist effective in terms of shielding of gamma radiation as it requires little distance compared to LZMB3, LZMB2 and LZMB1 to attenuate. RPE revealed a raise with increase in the thickness of the material and reduces as the energy raises. TF is superior in LZMB1 compared to LZMB2, LZMB3 and LZMB4, confirming that, LZMB4 will attenuate better. The ZEff of the materials was seen falling as the energy increases, confirming that the linear attenuation coefficient of the glass materials decreases when the energy is increased. The results confirmed that, glass material LZMB4 is the best option especially for gamma radiation shielding applications compared to LZMB3, followed by LZMB2, then LZMB1.
혈관분포도(vascularity) 및 세포조밀도(cellularity)와 같은 종양의 생물학적 특성을 고려한 임상표적체적을 결정하기 위하여, 국부혈류용적영상(regional cerebral blood volume map, rCBV map)과 겉보기확산계수영상(apparent diffusion coefficient map, ADC map)의 종양 체적을 해부학적 영상 위에 맵핑 할 수 있는 소프트웨어를 개발하였다. 개발한 프로그램은 해부학적 영상 및 기능 영상 간 mutual information, affine transform, non-rigid registration을 이용한 영상 정합 기능을 제공한다. 영상 정합 후 기준 영상과 정합된 영상에서 획득한 각 segmented bone의 겹치는 체적 비율 및 contour 간 평균 거리를 이용하여 정합도 평가도 가능하다. 잔여 종양이 있는 악성신경아교종 환자의 영상을 이용하여 소프트웨어의 기능을 평가하였을 때, bone segmentation과 contour 간 평균 거리 차이를 이용한 정합도는 각각 약 74%와 2.3 mm였으며, 수동정합을 이용하여 2~5% 정도의 정합도를 향상 시킬 수 있었다. 종양의 생물학적 특성을 치료 계획에 반영할 수 있도록, color map을 이용하여 rCBV map을 분석하였으며, ADC map에서 설정한 관심 영역의 평균 확산 계수와 표준 편차 등을 계산하여 종양의 예후 인자 및 악성도를 평가하였다. 두 기능 영상이 공통적으로 나타내는 종양 체적에서 얻은 생물학적 인자를 평면 위에 맵핑하여 종양의 특성을 쉽게 파악할 수 있는 multi-functional parametric map을 구성하였다. 또한 각기능 인자에 대응되는 악성 종양의 임계값을 적용하여 주변 종양 세포에 비하여 혈관 분포도는 높으면서 확산 계수는 낮아 악성 종양 세포일 확률이 높은 영역을 구분할 수 있었다. 각 기능 영상 위에서 설정한 생물학적 종양 체적 및 악성도가 높은 국소 체적은 해부학적 영상 위에 표시하여 dicom 파일로 출력할 수 있었다. 개발한 소프트웨어는 기능적 다중영상을 이용하여 생물학적 종양 체적을 해부학적 영상 위에 맵핑하는데 적용할 수 있으며, 해부학적 영상에서 파악하기 어려운 종양의 특성 변화들을 치료 계획에 활용할 수 있다. 나아가 개발한 소프트웨어를 이용하여, 한 종류의 영상을 참고하여 종양 체적을 결정했을 때 발생할 수 있는 오류를 줄이고, 치료 전이나 치료 과정에서 나타나는 종양의 조직학적, 생리학적 특성을 치료 계획에 접목하는데 활용할 수 있다.
본 연구는 이기성과 폐쇄성으로 사회적 공신력을 잃어가며, 전염병에 의한 사회적 거리두기가 확산되는 상황에서 신앙공동체인 교회를 이해하는데 있어 새로운 지평을 여는 목적으로 진행하였다. 첫째로, 교회를 나타내는 대표적인 용어인 '에클레시아'의 개념과 의미를 역사적, 성서적, 신학적으로 연구하면서, 이 용어를 빈번하게 사용한 바울의 의도를 탐구하였다. 둘째로, 공동체와 개인의 관계를 면역학적 개념으로 풀어간 에스포지토의 코무니타스와 이무니타스의 고찰을 통해 신앙공동체의 새 지평을 탐색하였다. 최근 교회는 다양한 원인으로 사회의 신뢰를 잃었을 뿐만 아니라, 의도치 않게 아주 일부의 교회가 전염병 바이러스의 전파자로 지적되어 신앙공동체의 약화 또는 상실의 위기에 봉착해 있다. 코로나 19 이후 2차 유행도 예측되고 있어, 일상의 부분적 상실과 더불어 교회에서의 모임 예배나 교제의 어려움도 불가피한 형국이다. 앞으로의 교회는 면역 개념을 이해하며, 예수그리스도의 정신과 삶의 향내를 드러내면서 사회의 변화를 이끌 수 있는 참된 신앙공동체의 구축이 필요하다. 이를 위해 급변하는 시대와 상황에 맞는 신앙공동체 패러다임의 혁신과 실천이 요청된다. 본고 1장에서는 사회적 공신력을 잃고, 사회적 거리두기의 대상이 된 교회와 신앙공동체의 문제점들을 이기성과 폐쇄성으로 지적하며 혁신을 제안한다. 2장에서는 신앙공동체 패러다임의 전환을 위해 고대 그리스에서 사용한 '에클레시아'를 연구하며 분석하며, 사도바울이 '에클레시아'를 교회라는 신앙공동체에 적용한 의도를 파악한다. 4장에서는 면역 개념에 대해 알아보고, 부정적 면역을 넘어 긍정적 면역의 개념을 통해 개인과 공동체의 관계를 고찰했던 에스포지토의 재해석을 정리하며, 다양한 공동체와 개인, 교회의 신앙공동체 변혁을 위한 적용점을 도출한다. 5장은 결론으로 '에클레시아'의 의미를 통해 약화 및 상실되어가는 소중한 모임과 참여를 회복시키고 더 높은 차원의 공적모임, 민주적 참여로의 확장을 제안한다. 그리고 면역 개념의 재해석에 입각해 다양한 개인 안에서의 연합, 연합 안에서의 다양한 개인을 교회와 신앙공동체의 대안으로 제시한다.
최근 화상 회의, 화상 전화, 모바일 환경에서의 화상 통신, 얼굴 인식을 이용한 보안 시스템 등의 상업화에 힘입어 비디오에서의 얼굴 검출 및 추적 기술은 눈부신 발전을 이룩하였다. 또한, 얼굴 요소 검출은 요소 그 자체뿐 아니라 정화한 얼굴 영역 검출을 위한 필수 단계로서 중요한 연구 주제가 되고 있다. 그러나 영상에 나타난 복잡한 배경과 카메라 조작 및 조명에 의한 색상 왜곡 그리고 다양한 조명 조건 둥은 얼굴 검출 및 추적, 요소 검출에 있어 여전히 큰 장애가 되고 있다. 이에 따라, 본 논문에서는 실시간 화상 통신을 위한 새로운 얼굴 영역 검출 및 추적 알고리즘과 검출된 얼굴 영역에서 효과적으로 눈 영역을 검출할 수 있는 알고리즘을 제안한다. 제안하는 얼굴 검출 알고리즘은 복잡한 배경과 다양한 조명 조건에 관계없이 얼굴을 검출하고 추적하기 위해 웨이블릿 변환된 세 종류의 부 영역을 이용하여 얼굴 형판을 생성하고 웨이블릿 변환된 입력 영상과의 유사도를 측정하여 얼굴을 검출한다. 특히 다양한 조명 조건을 극복하기 위해 최소-최대 정규화와 히스토그램 평활화를 혼합 적용하여 매우 밝거나, 매우 어두운 영상에서의 얼굴 오 검출 및 놓침을 줄일 수 있었으며 세 가지 크기의 얼굴 형판을 이용함으로써 입력 영상에 존재하는 다양한 크기의 얼굴도 검출할 수 있었다. 또한 효과적인 얼굴 추적 알고리즘을 통해 다음 프레임에서의 얼굴 위치를 예측하고 예측된 얼굴 위치를 중심으로 탐색 영역을 정해 형판 정합을 수행함으로써 얼굴 검출률을 높이면서 수행 시간도 단축시킬 수 있었다. 수직, 수평방향 투영을 이용한 합리적인 눈 검출 알고리즘은 어두운 조명이나 부정확한 얼굴 영역에서도 만족스러운 결과를 보여주었다.26$이었으며, 점차 감소, 다시 증가하여 담금 10일에는 $3.42{\sim}3.69$이었다. 시험구별로는 KKR이 가장 낮았다. 총산은 담금 1일에 $0.29{\sim}0.82%$였으며 담금 6일에 $1.75{\sim}2.53%$로 최고값을 나타내었으며 그 후 감소하여 담금 10일에는 $1.61{\sim}2.34%$였다. 시험구간에는 KKR, SKR이 비교적 높은 값을 나타내었다. 무기질 함량은 발효기간이 경과할수록 증하였고 Ca는 $2.95{\sim}36.76$, Cu는 $0.01{\sim}0.14$, Fe는 $0.71{\sim}3.23$, K는 $110.89{\sim}517.33$, Mg는 $34.78{\sim}122.40$, Mn은 $0.56{\sim}5.98$, Na는 $0.19{\sim}14.36$, Zn은 $0.90{\sim}5.71ppm$을 나타내었으며, 시험구별로 보면 WNR, BNR구가 Na만 제외한 다른 무기성분 함량이 가장 높았다.O to reduce I/O cost by reusing data already present in the memory of other nodes. Finally, chunking and on-line compression mechanisms are included in both models. We demonstrate that we can obtain significantly high-performance
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.