• 제목/요약/키워드: distance protection

검색결과 531건 처리시간 0.028초

송전선로 보호용 디지털 지능형 거리계전기 (Digital Adaptive Distance Relay for Transmission Line Protection)

  • 정창호;김진오
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제50권9호
    • /
    • pp.411-416
    • /
    • 2001
  • Distance relay is the most widely used in transmission line protection because it is applicable not only as main protection but also as back-up protection. However, the protection range of the distance relay is always fixed in the unchangeable operating range while the power system varies, and therefore the distance relay is the device that is the highly influenced by the power system changes. In this regard, this paper describes an approach to minimize the mal-operation of the distance relay due to the power system changes through changing protection range of the distance relay into optimal condition in response to the load variation and power system condition. Also mal-function of the distance repay in case of high resistance ground faults could be minimized through modeling the protection range into quadratic function.

  • PDF

IEC 61850 기반 후비보호계전시스템 보호협조 개선방안 (Improved Coordination Method for Back-up Protection Schemes Based on IEC 61850)

  • 김형규;강상희
    • 전기학회논문지
    • /
    • 제60권1호
    • /
    • pp.43-49
    • /
    • 2011
  • A distance relay scheme is commonly used for backup protection. This scheme, called a step distance protection, is comprised of 3 steps for graded zones having different operating time. As for the conventional step distance protection scheme, Zone 2 can exceed the ordinary coverage excessively in case of a transformer protection relay especially. In this case, there can be overlapped protection area from a backup protection relay and, therefore, malfunctions can occur when any fault occurs in the overlapped protection area. Distance relays and overcurrent relays are used for backup protection generally, and both relays have normally this problem, the maloperation, caused by a fault in the overlapped protection area. Corresponding to an IEEE standard, this problem can be solved with the modification of the operating time. On the other hand, in Korea, zones are modified to cope with this problem in some specific conditions. These two methods may not be obvious to handle this problem correctly because these methods, modifying the common rules, can cause another coordination problem. To overcome this problem clearly, this paper describes an improved backup protection coordination scheme using an IEC 61850-based distance relay for transformer backup protection. IEC 61850-based IED(Intelligent Electronic Device) and the network system based on the kernel 2.6 LINUX are realized to verify the proposed method. And laboratory tests to estimate the communication time show that the proposed coordination method is reliable enough for the improved backup protection scheme.

Setting Considerations of Distance Relay for Transmission Line with STATCOM

  • Zhang, Wen-Hao;Lee, Seung-Jae;Choi, Myeon-Song
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권4호
    • /
    • pp.522-529
    • /
    • 2010
  • Distance relay plays an important role in the protection of transmission lines. The application of flexible AC transmission systems (FACTS) devices, such as the static synchronous compensator (STATCOM), could affect the performance of the distance relay because of compensation effect. This paper analyzes the application of distance relay on the protection of a transmission line containing STATCOM. New setting principles for different protection zones are proposed based on this analysis. A typical 500 kV transmission system employing STATCOM is modeled using Matlab/Simulink. The impact of STATCOM on distance protection scheme is studied for different fault types, fault locations, and system configurations. Based on simulation results, the performance of distance relay is evaluated. The setting principle can be verified for the transmission line with STATCOM.

임피던스 계전기를 이용한 발전기 비동기 투입 보호 연구 (A Study on Protection of Generator Asynchronization by Impedance Relaying)

  • 이종훤
    • 전기학회논문지
    • /
    • 제60권11호
    • /
    • pp.2000-2006
    • /
    • 2011
  • Asynchronous phenomenon occurs on the synchronous generators under power system when a generator's amplitude of electromagnetic force, phase angle, frequency and waveform etc become different from those of other synchronous generators which can follow instantly varying speed of turbine. Because the amplitude of electromagnetic force, phase frequency and waveform differ from those of other generators with which are to be put into parallel operation due to the change of excitation condition for load sharing and the sharing load change, if reactive current in the internal circuit circulates among generators, the efficiency varies and the stator winding of generators are overheated by resistance loss. Where calculation method of protection settings and Logic for Protection of Generator Asynchronization will be recommended, A distance relay scheme is commonly used for backup protection. This scheme, called a step distance protection, is comprised of 3 steps for graded zones having different operating time. As for the conventional step distance protection scheme, Zone 2 can exceed the ordinary coverage excessively in case of a transformer protection relay especially. In this case, there can be overlapped protection area from a backup protection relay and, therefore, malfunctions can occur when any fault occurs in the overlapped protection area. Distance relays and overcurrent relays are used for backup protection generally, and both relays have normally this problem, the maloperation, caused by a fault in the overlapped protection area. Corresponding to an IEEE standard, this problem can be solved with the modification of the operating time. On the other hand, in Korea, zones are modified to cope with this problem in some specific conditions. These two methods may not be obvious to handle this problem correctly because these methods, modifying the common rules, can cause another coordination problem. To overcome asynchronizing protection this paper describes an improved backup protection coordination scheme using a new Logic that will be suggested.

Development of Protection Method for Power System interconnected with Distributed Generation using Distance Relay

  • Kim, Ji-Soo;Cho, Gyu-Jung;Song, Jin-Sol;Shin, Jae-Yun;Kim, Dong-Hyun;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권6호
    • /
    • pp.2196-2202
    • /
    • 2018
  • The conventional power system allowed only downstream power flow. Therefore, even if a fault occurs, only the forward current flow is considered. However, with the interest in distributed generation (DG), DGs such as Photovoltaic (PV), Wind Turbine (WT) are being connected to a power system. DGs have many advantages, but they also have disadvantage such as generation of reverse flow. Reverse flow can severely disrupt existing protection systems that only consider downstream power flow. The major problems that may arise from reverse power flow are blinding protection and sympathetic tripping. In order to solve such problems, the methods of installing a directional relay or a fault current limiter is proposed. However, this method is inconceivable because of the economics shortage. Therefore, in this paper, a distance relay installed in existing power system is used to solve the protection problem. Modeling of distance relay has been carried out using ElectroMagnetic Transients Program (EMTP), and it has been verified through simulations that the above problems can be solved by a distance relay.

고장거리계산과 아크고장 판별 알고리즘 (Numerical Algorithm for Distance Protection and Arcing Fault Recognitior)

  • ;박경원;박장수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 A
    • /
    • pp.163-165
    • /
    • 2002
  • In this paper a new numerical algorithm for fault distance calculation and arcing fault recognition based on one terminal data and derived in lime domain is presented. The algorithm is derived for the case of most frequent single-phase line to ground fault. The faulted phase voltage at the fault place is modeled as a serial connection of fault resistance and arc voltage. The fault distance and arc voltage amplitude are estimated using Least Error Squares Technique. The algorithm can be applied for distance protection, intelligent autoreclosure and for fault location. The results of algorithm tested through computer simulation are given.

  • PDF

차폐천이 물리치료실 환경내 전자기장 감소에 미치는 효과 (The Effect of Electromagnetic Fields Shielding on Electromagnetic Fields Decrease in P. T Room)

  • 임창훈;김진상
    • The Journal of Korean Physical Therapy
    • /
    • 제12권2호
    • /
    • pp.69-82
    • /
    • 2000
  • Physical therapists are exposured to radio-and microwave-frequency electromagnetic radiation by operating electrotherapy units. So there is few protection system in physical therapy room. Clinical pathology room and so on where various kins of electromagnetic instruments is used in hospital while protection failities like protection wall or protection glass is being used only in radiological room to reduce the damage of radiation. Acoording to Larsen's survey on female physical therapist in denmark. it was said that the percentage of congenital malfornation was $3.6\%$ and cadiac malformation made up $0.7\%$. It is likely that effect of electromagnetic fields on the result cannot be ruled out. Rita ouellet-Hellstron and Walter F. Steward insisted that the danger of abortion increase in the case of pregnant femeal physical therapist exposured to microwave diathermy. The intention of our study is arousing the necessity of microwave protection in P.T room and finding the proper method for physical therapist safe. The results of this study were as follows: 1. Each electrotherapy units are occurrenced the electromagnetic fields, and specially amply occurrenced in H.P,I.C.T 2 unit operating, M.W.D unit head on parallel, S.W.D unit head on parallel. all electrotherapy units are operating. 2. There were electric fields mount are consideration to species of electrotherapy units(p<.05). 3. There were magnetic fields mount are consideration to species of electrotherapy units(p<.05). 4. There were electric fields mount are consideration to distance of electrotherapy units(p<.05). 7. There were magnetic fields mount are consideration nut to distance of electrotherapy units(p>.05). 8. Before and after protection on magnetic fields mount are consideration to all distance(0m, 0.3m, 1m, 3m, 5m)(p<.05) 9. Before and after protection on electric fields mount are consideration to 0m, 1m, 3m distance(p<.05), and consideration not to 0.3m, 5m distance(p>.05) 10. After protection fellow the each electrotherapy units. distance, intencity to electromagnetic fields are reduced(p<.05).

  • PDF

스팀터빈 발전기 비동기 투입 사례연구를 통한 비동기 방지 알고리즘 개발 (Development of Asynchronous Blocking Algorithm through Asynchronous Case Study of Steam Turbine Generator)

  • 이종훤
    • 전기학회논문지
    • /
    • 제61권10호
    • /
    • pp.1542-1547
    • /
    • 2012
  • Asynchronous phenomenon occurs on the synchronous generators under power system when a generator's amplitude of electromagnetic force, phase angle, frequency and waveform etc become different from those of other synchronous generators which can follow instantly varying speed of turbine. Because the amplitude of electromagnetic force, phase frequency and waveform differ from those of other generators with which are to be put into parallel operation due to the change of excitation condition for load sharing and the sharing load change, if reactive current in the internal circuit circulates among generators, the efficiency varies and the stator winding of generators are overheated by resistance loss. When calculation method of protection settings and logic for protection of generator asynchronization will be recommended, a distance relay scheme is commonly used for backup protection. This scheme, called a step distance protection, is comprised of 3 steps for graded zones having different operating time. As for the conventional step distance protection scheme, zone 2 can exceed the ordinary coverage excessively in case of a transformer protection relay especially. In this case, there can be overlapped protection area from a backup protection relay and, therefore, malfunctions can occur when any fault occurs in the overlapped protection area. Distance relays and overcurrent relays are used for backup protection generally, and both relays have normally this problem, the maloperation, caused by a fault in the overlapped protection area. Corresponding to an IEEE standard, this problem can be solved with the modification of the operating time. On the other hand, in Korea, zones are modified to cope with this problem in some specific conditions. These two methods may not be obvious to handle this problem correctly because these methods, modifying the common rules, can cause another coordination problem. To overcome asynchronizing protection, this paper describes an improved backup protection coordination scheme using a new logic that will be suggested.

2단 종속 SPD시스템의 보호특성 (Protection Characteristics of Two-Stage Cascade SPD Systems)

  • 이복희;신희경
    • 조명전기설비학회논문지
    • /
    • 제27권5호
    • /
    • pp.95-103
    • /
    • 2013
  • Protection of the electrical and electronic equipment against surges in low voltage AC power distribution systems is based on wide applications of surge protective devices(SPDs). Cascade application of SPDs located at the service entrance of a building and near sensitive equipment is intended to ensure the optimal voltage protection level and energy sharing among cascade SPDs. In this paper, when surges impinge at the service entrance of the building of interest, the protection characteristics of two-stage cascade SPD systems were investigated. The influence of the distance between the upstream and downstream SPDs on the voltage protection level and energy sharing of the two-stage cascade SPD systems were analyzed experimentally. It was found that the energy sharing of two-stage cascade SPD systems strongly depends on the distance between the two SPDs and the component of SPD. As the distance between the two SPDs increases, the energy absorbed by the upstream SPD increases while the energy absorbed by the downstream SPD decreases. Consequently, it is desirable to select the upstream and downstream SPDs having the proper energy capability with due consideration of the distance between the two SPDs.

종속 접속된 전압제한형 서지방호장치의 에너지협조 (Energy Coordination of Cascaded Voltage Limiting Type Surge Protective Devices)

  • 이복희;신희경
    • 조명전기설비학회논문지
    • /
    • 제27권2호
    • /
    • pp.29-35
    • /
    • 2013
  • For the purpose of designing and applying optimum surge protection, one of the essential points is to take into account the energy coordination between cascaded surge protective devices(SPDs) and it is important to obtain an acceptable sharing of the energy stress between two cascaded SPDs. In this paper, in case of two voltage-limiting SPDs connected in parallel, the amount of splitting impulse current and energy that flow through each SPDs is investigated as a function of the protective distance. As a result, the energetic coordination between cascaded SPDs is strongly dependent on the voltage protection level of SPDs and the protective distance. It was confirmed that the sharing of the energy between two cascaded SPDs and the limited voltage levels are appropriate when the voltage protection levels of both upstream and downstream SPDs are the same.