• 제목/요약/키워드: dissolved ions

검색결과 260건 처리시간 0.024초

자력에 의한 산성 광산 배수의 처리 - 철(Fe) 성분의 제거- (The Treatment of Acid Mine Drainage - The removal of Iron(Fe) component-)

  • 송근호;이광래
    • 산업기술연구
    • /
    • 제32권A호
    • /
    • pp.21-27
    • /
    • 2012
  • The characteristics of floc formation of the iron(Fe) ions contained in the acid mine drainage was studied for developing the process treating the acid mine drainage. The iron(Fe) ions were formed into flocs by the acid-base reaction with the added $Ca(OH)_2$. The molal ratio of iron(Fe) vs $Ca(OH)_2$ was one of major control variables in treatment; pH change, iron(Fe) ions concentration in treated drainage, DO (dissolved oxygen content). In addition, the air gave much effect on the color of the $iron(Fe)-Ca(OH)_2$ flocs and the attachment to magnet. The attaching to the magnet of the flocs formed in the air was much less than the case without air.

  • PDF

Pulsed Amperometric Detection of Metal Ions Complexing with EDTA in a Flow Injection System

  • 이준우;여인형;편종홍
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권3호
    • /
    • pp.316-318
    • /
    • 1997
  • A general and universal detection method, which can be used in high performance liquid chromatography (HPLC) and flow injection analysis (FIA) system for the determination of any metal ions complexing with ethylenediaminetetraacetic acid (EDTA), is demonstrated. Pulsed amperometric detection scheme is applied in a flow-through thin layer electrochemical cell at an Au working electrode. Fluctuation of peak current level at the same flow rate of carrier solution is minimized at this solid working electrode, whereas not at a dropping mercury electrode. Removal of dissolved oxygen can be omitted with this detection method, which is a required step for cathodic detection methods. Also, a group of metal ions can be determined selectively and indirectly with this detection scheme.

황기 줄기 바이오차를 활용한 카드뮴과 망간 이온의 제거 (Removal of Cadmium and Manganese Ions Utilizing Astragalus uliginosus L.-Stem Biochar)

  • 최석순;하정협;김승수
    • 공업화학
    • /
    • 제31권1호
    • /
    • pp.7-12
    • /
    • 2020
  • 충북의 북부지역에서 한약재 부산물로서 황기 줄기가 대량 생산되고 있으나, 이러한 부산물들은 특별한 수요처가 없이 밭에 폐기물로 버려지고 있다. 본 연구에서는 이 폐기물을 재활용하고자, 황기 줄기를 사용하여 바이오차를 제조하였다. 이 바이오차를 사용하여 물속에 용해된 카드뮴과 망간 이온의 제거특성을 고찰하였다. 50과 100 mg/L 카드뮴 이온을 처리하기 위하여 흡착 평형 실험이 이루어졌을 때, 카드뮴의 제거효율은 각각 100과 95%를 나타내었다. 또한, 50과 100 mg/L 망간 이온을 제거하기 위하여 5 h의 반응이 이루어졌을 때, 각각 36.1과 37.9 mg/g 최대 흡착량을 얻을 수 있었다. 위의 실험 결과, 카드뮴과 망간 이온의 제거공정에서 황기 줄기 바이오차는 활성탄보다 4배 이상의 흡착량을 나타내었다. 그리고 황기 줄기 바이오차와 활성탄 표면의 화학 구조를 관찰하기 위하여 X-ray photoelectron spectroscopy (XPS)를 분석한 결과, 황기 줄기 바이오차는 활성탄과 비교하여 산소 함량과 O/C의 비율이 각각 2.1과 2.4배 증가함을 알 수 있었다. 또한, 망간 이온의 제거능력을 향상시키기 위하여 온도 변화에 의한 운전이 이루어졌으며, 45 ℃로 4 h에서 흡착 평형에 도달하였으며 50과 100 mg/L 망간 이온은 각각 92, 53%의 제거효율을 나타내었다. 결과적으로 이러한 실험 결과들은 물속에 용해된 카드뮴과 망간 이온을 친환경적이며 경제적으로 처리하는 새로운 제거 기술에 유용하게 사용될 수 있을 것이다.

Fe3Al, Fe3Al-Cr, Fe3Al-Cr-Mo, Ni3Al 및 Ni3Al-Cr 합금표면에 형성된 산화물 특성분석 (Characterization of Oxide Scales Formed on Fe3Al, Fe3Al-Cr, Fe3Al-Cr-Mo, Ni3Al and Ni3Al-Cr Alloys)

  • 심웅식;이동복
    • 한국재료학회지
    • /
    • 제12권11호
    • /
    • pp.845-849
    • /
    • 2002
  • Alloys of $Fe_3$Al, $Fe_3$Al-6Cr, $Fe_3$Al-4Cr-1Mo, $Ni_3$Al, and $Ni_3$Al-2.8Cr were oxidized at $1000^{\circ}C$ in air, and the oxide scales formed were studied using XRD. SEM, EPMA, and TEM. The oxide scales that formed on $Fe_3$Al-based alloys consisted primarily of $\alpha$-$Al_2$$O_3$ containing a small amount of dissolved Fe and Cr ions, whereas those that formed on $Ni_3$Al-based alloys consisted primarily of $\alpha$-$Al_2$$O_3$, together with a small amount of $NiAl_2$$O_4$, NiO and dissolved Cr ions. For the entire alloys tested, nonadherent oxide scales formed, and voids were inevitably existed at the scale-matrix interface.

Extent and persistence of dissolved oxygen enhancement using nanobubbles

  • Tekile, Andinet;Kim, Ilho;Lee, Jai-Yeop
    • Environmental Engineering Research
    • /
    • 제21권4호
    • /
    • pp.427-435
    • /
    • 2016
  • In this study, change in water-dissolved oxygen (DO) was analyzed under various synthetic water qualities and nanobubbles (NBs) application conditions, such as gas type, initial DO as well as water dissolved, suspended and organic matters contents. When oxygen, rather than air, was introduced into nitrogen-desorbed ultra-pure water, the stagnation time was significantly increased. It took ten days for DO concentration to drop back to saturation. The higher the initial DO concentration, the longer particles were observed above saturation due to particle stability improvement. The oxygen mass transfer rate of 0.0482 mg/L/min was found to reach a maximum at an electrolytic concentration of 0.75 g/L, beyond which the transfer rate decreased due to adsorption of negative ions of the electrolyte at the interface. High levels of turbidity caused by suspended solids have become a barrier to dissolution of NBs oxygen into the water solution, and thus affected the transfer performance. On the other hand, by applying NBs for just an hour, up to 7.2% degradation of glucose as representative organic matter was achieved. Thus, NBs technology would maintain a high DO extent for an extended duration, and thus can improve water quality provided that water chemistry is closely monitored during its application.

비스페놀A와 니트로벤젠의 펜톤 산화분해 특성 (A Study on the Characteristics of Fenton Oxidation of Bisphenol A and Nitrobenzene)

  • 배수진;권희원;김지영;황인성;김영훈
    • 한국환경과학회지
    • /
    • 제30권12호
    • /
    • pp.1005-1014
    • /
    • 2021
  • Organic contaminants can be released into water environments due to chemical accidents and exist as dissolved and non-aqueous phase liquids (NAPL). Fenton oxidation was tested for bisphenol A and nitrobenzene as model organic contaminants in dissolved and NAPL states. Fenton oxidation was successfully applied for both of the dissolved and NAPL states of the two pollutants and the results indicated that a quick treatment was needed to reduce the risk from a chemical accidents instead of carrying out oxidation after the contaminants dissolve in water. A set of Fenton reactions were tested under seawater conditions because chemical accidents often occurs in the ocean. Chloride ions act as radical scavengers and inhibit Fenton oxidation. The reaction rate is inversely proportional to salt contents and the reduced reaction rate can be compensated by increasing the quantity of the oxidizing agents. The current study showes that Fenton oxidation could be applied as a quick treatments for organic contaminant in dissolved and NAPL state organic contaminants released as a result of leaks or chemical accidents.

하계 완도 주변 육상 양식장 배출수 중 유기탄소 및 영양염의 분포 특성 (Distribution Characteristics of Organic Carbon and Nutrient in Effluent of Land-based Aquaculture Farms around Wando in Korea)

  • 김규리;최유정;김태훈
    • Ocean and Polar Research
    • /
    • 제45권3호
    • /
    • pp.103-111
    • /
    • 2023
  • To evaluate the impact of effluents from land-based fish farms on the coastal ocean of Wando, Korea, we analyzed inorganic nutrients, particulate organic carbon (POC), dissolved organic carbon (DOC), and colored dissolved organic matter (CDOM) in the effluent and influent of land-based fish farms during the summer (July) of 2021. The average concentrations of nutrients (Dissolved inorganic nitrogen, phosphorus, and silicate; DIN, DIP, and DSi, respectively) in the effluents of this study area were 17±3.7 μM, 1.4±0.7 μM, and 14±1.6 μM, respectively. The average concentrations of POC and DOC were 37±22 μM and 81±13 μM, respectively, with POC accounting for about 30% for total organic carbon in effluents. The Reduced Dissolved Inorganic Nitrogen/Total Dissolved Inorganic Nitrogen ratio (0.7), potential short-period index, indicates that the discharge of nutrients excreted by the fish and unconsumed feed into coastal water results in such nutrients being deposited and accumulated in the sediment. Subsequently, this continuous accumulation triggers the release of ammonium ions during organic matter decomposition, and the ammonium-enriched waters that encroach on fish farms as influent seem to be due to the diffusion of high concentrations of ammonium from bottom sediment. Furthermore, we used fluorescence indices to examine the characteristics of organic matter sources, obtaining mean values of 1.54±0.19, 1.06±0.06, and 1.56±0.06 for the humification index, biological index, and fluorescence index, respectively, in the effluent. These results indicate that the organic matters had an autochthonous origin that resulted from microbial decomposition, and such organic matters were rapidly generated and removed by biological activity, likely supplied from the sediment. Our results suggest that the effluent from land-based fish farms could be a potential source of deoxygenation occurrence in coastal areas.

수리지화학적 추적자(222Rn, 주요용존이온)와 미생물 군집 분석을 통한 도심 지역 하천에서의 지하수 유출 특성 평가 (Determining Characteristics of Groundwater Inflow to the Stream in an Urban Area using Hydrogeochemical Tracers (222Rn and Major Dissolved Ions) and Microbial Community Analysis)

  • 오용화;김동훈;이수형;문희선;조수영
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제25권2호
    • /
    • pp.16-23
    • /
    • 2020
  • In this work, 222Rn activity, major dissolved ions, and microbial community in ground- and surface waters were investigated to characterize groundwater inflow to the stream located in an urban area, Daejeon, Korea. The measured 222Rn activities in groundwater and stream water ranged from 136 to 231 Bq L-1 and 0.3 to 48.8 Bq L-1, respectively. The spatial distributions of 222Rn activity in the stream strongly suggested groundwater inflow to the stream. The change of geochemical composition of the stream water indicated the effect of groundwater discharge became more pronounced as the stream flows downstream. Furthermore, microbial community composition of the stream water had good similarity to that of groundwater, which is another evidence of groundwater discharge. Although groundwater inflow could not be estimated quantitatively in this study, the results can provide useful information to understand interactions between groundwater and surface water, and determine hydrological processes governing groundwater recharge and hydrogeological cycles of dissolved substances such as nutrients and trace metals.

오존산화를 이용한 폐광산배수 내 용존 중금속 제거에 관한 연구 (Removal of Dissolved Heavy Metals in Abandoned Mine Drainage by Ozone Oxidation System)

  • 서석호;안광호;이정규;김건중;주경훈;라영현;고광백
    • 한국물환경학회지
    • /
    • 제26권5호
    • /
    • pp.725-731
    • /
    • 2010
  • This study was to evaluate the ozone oxidation of dissolved Fe, Mn, $SO{_4}^{2-}$ ions and color in abandoned mining drainage by conducting a bench-scale operation at various reaction times in an ozone reactor. The influent was collected from an abandoned mine drainage (AMD) near the J Mine in Jungsungun, Kangwon Province. The ozone reactor was operated at ozone reaction times of 10, 20 and 30 min with ozone doses of 0.0 and $2.4g\;O_3/hr$. Samples from each effluent from subsequent sand filtration were regularly collected and analyzed for pH, Fe, Mn, Al, Cr, Hg, $SO{_4}^{2-}$, alkalinity, color, ORP, TDS and EC. The effluent concentrations of Fe and Mn from the sand filter were less than 0.1 mg/L, which were below the concentrations on Korean drinking water quality standards (Fe, Mn < 0.30 mg/L). The influent $SO{_4}^{2-}$, concentrations were not noticeably changed during this ozone oxidation. Cr and Hg in the raw wastewater from the abandoned mining drainage were not detected in this study. The experimental result shows that the ozone oxidation of dissolved heavy metals and subsequent sand filtration of metal precipitates are desirable alternative for removing heavy metals in AMD.

CrAlMgSiN 박막의 600-900℃에서의 대기중 산화 (Oxidation of CrAlMgSiN thin films between 600 and 900℃ in air)

  • 원성빈;;황연상;이동복
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.112-113
    • /
    • 2013
  • Thin CrAlMgSiN films, whose composition were 30.6Cr-11.1Al-7.3Mg-1.2Si-49.8N (at.%), were deposited on steel substrates in a cathodic arc plasma deposition system. They consisted of alternating crystalline Cr-N and AlMgSiN nanolayers. After oxidation at $800^{\circ}C$ for 200 h in air, a thin oxide layer formed by outward diffusion of Cr, Mg, Al, Fe, and N, and inward diffusion of O ions. Silicon ions were relatively immobile at $800^{\circ}C$. After oxidation at $900^{\circ}C$ for 10 h in air, a thin $Cr_2O_3$ layer containing dissolved ions of Al, Mg, Si, and Fe formed. Silicon ions became mobile at $900^{\circ}C$. After oxidation at $900^{\circ}C$ for 50 h in air, a thin $SiO_2-rich$ layer formed underneath the thin $Cr_2O_3$ layer. The film displayed good oxidation resistance. The main factor that decreased the oxidation resistance of the film was the outward diffusion and subsequent oxidation of Fe at the sample surface, particularly along the coated sample edge.

  • PDF