• 제목/요약/키워드: dissolution temperature

검색결과 415건 처리시간 0.024초

수산화아파타이트 분말의 열처리가 유사생체용액 내 용해거동에 미치는 영향 (Influence of thermal treatment on the dissolution of hydroxyapatite powders in simulated body fluid)

  • 송대성;서동석;이종국
    • 한국결정성장학회지
    • /
    • 제15권2호
    • /
    • pp.79-85
    • /
    • 2005
  • 수산화아파타이트 상용분말을 $1000{\sim}1350^{\circ}C$ 온도범위에서 2시간 동안 공기 중에서 하소한 다음, pH 7.4인 유사 생체용액에 넣고 $37^{\circ}C$에서 3일 또는 7일간 침적실험을 행하였다. 열분해에 따른 수산화아파타이트 분말의 용해 거동은 XRD, FTIR, TEM을 이용해 비교분석 하였다. $1200^{\circ}C$에서 하소된 수산화아파타이트 분말은 격자 내 $OH^-$ 이온들의 탈수로 인하여 OHAP(oxyhydroxyapatite, ($Ca_{10}(PO_4)_6O_x(OH)_{2-2x}$)로 전이하였다. $1350^{\circ}C$에서 수산화아파타이트 분말 일부가 ${\alpha}-TCP$(${\alpha}-tricalcium$ phosphate)와 TTCP (tetracalcium phosphate)로 열분해 되었다. 수산화아파타이트 분말의 열분해로 인해 생성된 ${\alpha}-TCP$, TTCP 및 비화학양론조성의 OHAP 조성들이 수산화아파타이트 분말의 표면용해를 진전시켰다.

고체분산체를 이용한 약물의 생체이용율 향상을 위한 전략 (Solid Dispersion as a Strategy to Improve Drug Bioavailability)

  • 박준형;전명관;조훈;최후균
    • KSBB Journal
    • /
    • 제26권4호
    • /
    • pp.283-292
    • /
    • 2011
  • Solid dispersion is one of well-established pharmaceutical techniques to improve the dissolution and consequent bioavailability of poorly water soluble drugs. It is defined as a dispersion of drug in an inert carrier matrix. Solid dispersions can be classified into three generations according to the carrier used in the system. First and second generations consist of crystalline and amorphous substances, respectively. Third generation carriers are surfactant, mixture of polymer and surfactants, and mixture of polymers. Solid dispersions can be generallyprepared by melting method and solvent method. While melting method requires high temperature to melt carrier and dissolve drug, solvent method utilizes solvent to dissolve the components. The improvement in dissolution through solid dispersions is attributed to reduction in drug particle size, improvement in wettability, and/or formation of amorphous state. The primary characteristics of solid dispersions, the presenceof drug in amorphous state, could be determined by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and fourier-transformed infrared spectroscopy (FTIR). In spite of the significant improvement in dissolution by solid dispersion technique, some drawbacks have limited the commercial application of solid dispersions. Thus, further studies should be conducted in a direction to improve the congeniality to commercialization.

Deposition of Functional Organic and Inorganic Layer on the Cathode for the Improved Electrochemical Performance of Li-S Battery

  • Sohn, Hiesang
    • Korean Chemical Engineering Research
    • /
    • 제55권4호
    • /
    • pp.483-489
    • /
    • 2017
  • The loss of the sulfur cathode material through dissolution of the polysulfide into electrolyte causes a significant capacity reduction of the lithium-sulfur cell during the charge-discharge reaction, thereby debilitating the electrochemical performance of the cell. We addressed this problem by using a chemical and physical approach called reduction of polysulfide dissolution through direct coating functional inorganic (graphene oxide) or organic layer (polyethylene oxide) on electrode, since the deposition of external functional layer can chemically interact with polysulfide and physically prevent the leakage of lithium polysulfide out of the electrode. Through this approach, we obtained a composite electrode for a lithium-sulfur battery (sulfur: 60%) coated with uniform and thin external functional layers where the thin external layer was coated on the electrode by solution coating and drying by a subsequent heat treatment at low temperature (${\sim}80^{\circ}C$). The external functional layer, such as inorganic or organic layer, not only alleviates the dissolution of the polysulfide electrolyte during the charging/discharging through physical layer formation, but also makes a chemical interaction between the polysulfide and the functional layer. As-formed lithium-sulfur battery exhibits stable cycling electrochemical performance during charging and discharging at a reversible capacity of 700~1187 mAh/g at 0.1 C (1 C = 1675 mA/g) for 30 cycles or more.

결정슬래그의 $T_{cv}$ 측정 시 실험변수에 따른 영향 (Effects of Experimental Variables on the Measurement $T_{cv}$ of Crystalline slags)

  • 김유나;오명숙
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.254-257
    • /
    • 2008
  • For crystalline slags, of which the viscosity rapidly increases at $T_{cv}$ due to the formation of crystalline phases, the Tcv is affected by measurement conditions. In this study, we investigated the effect of cooling rate, and alumina dissolution on the determination of $T_{cv}$. Using synthetic slag samples based on the composition of Alaska Usibelli slag, $T_{cv}$ were determined under a constant cooling rate of $2^{\circ}C$/min, and under rapid cooling with holding time to allow the slag to reach thermal and rheological equilibrium. The effect of alumina dissolution was investigated using platinum lined crucibles. The constant cooling resulted in lower $T_{cv}$ by $33^{\circ}C$ as compared to the equilibrium measurements. Under $2^{\circ}C$/min cooling, the blocking alumina dissolution resulted in lower $T_{cv}$ by $23^{\circ}C$. When the $T_{cv}$ was measured under $2^{\circ}C$/min cooling using an alumina crucible, therefore, the effects of a constant cooling is somewhat offset by the alumina dissolution effect, and bring the measured value closer to the true value.

  • PDF

인산염계 수용성 유리의 용출 및 구조 분석 (Dissolution and Structure Analysis of Phosphate Water Soluble glasses)

  • 윤영진;윤태민;이용수;강원호
    • 한국재료학회지
    • /
    • 제12권7호
    • /
    • pp.545-549
    • /
    • 2002
  • Potassium-Calcium-Phosphate glasses in range $XCaO\cdot(50-X)K_2O$ \cdot $50P_2$$O^{5}$were investigated. Glass transition temperature(Tg) of prepared glasses were below $520^{\circ}C$, thermal expansion coefficient from $270.3$\times$10^{7}$ to $604.5$\times$10^{7}$/$^{\circ}C$. The structure of XCaO.(50-X)$K_2$O\cdot$50P_2$$O^{5}$ glasses were examined by FT-IR spectroscopy indirectly. As CaO was increased, Ts, Tg, P-O-P bonding strength and chemical durability were increased. Glass surface change was observed with increasing dissolution time using bulk specimen, weight loss and pH change were measured as function of the dissolution time.

Investigation on Dissolution and Removal of Adhered LiCl-KCl-UCl3 Salt From Electrodeposited Uranium Dendrites using Deionized Water, Methanol, and Ethanol

  • Killinger, Dimitris Payton;Phongikaroon, Supathorn
    • 방사성폐기물학회지
    • /
    • 제18권4호
    • /
    • pp.549-562
    • /
    • 2020
  • Deionized water, methanol, and ethanol were investigated for their effectiveness at dissolving LiCl-KCl-UCl3 at 25, 35, and 50℃ using inductively coupled plasma mass spectrometry (ICP-MS) to study the concentration evolution of uranium and mass ratio evolutions of lithium and potassium in these solvents. A visualization experiment of the dissolution of the ternary salt in solvents was performed at 25℃ for 2 min to gain further understanding of the reactions. Aforementioned solvents were evaluated for their performance on removing the adhered ternary salt from uranium dendrites that were electrochemically separated in a molten LiCl-KCl-UCl3 electrolyte (500℃) using scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS). Findings indicate that deionized water is best suited for dissolving the ternary salt and removing adhered salt from electrodeposits. The maximum uranium concentrations detected in deionized water, methanol, and ethanol for the different temperature conditions were 8.33, 5.67, 2.79 μg·L-1 for 25℃, 10.62, 5.73, 2.50 μg·L-1 for 35℃, and 11.55, 6.75, and 4.73 μg·L-1 for 50℃. ICP-MS analysis indicates that ethanol did not take up any KCl during dissolutions investigated. SEM-EDS analysis of ethanol washed uranium dendrites confirmed that KCl was still adhered to the surface. Saturation criteria is also proposed and utilized to approximate the state of saturation of the solvents used in the dissolution trials.

Dissolution, crystallilnity, and mechanical properties of silk sericin from Sericinjam silkworm cocoons

  • Yun Yeong Choi;Seong Wan Kim;Kee Young Kim;In Chul Um
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제46권1호
    • /
    • pp.9-15
    • /
    • 2023
  • Recently, a silkworm strain (tentatively named Sericinjam) producing 100% sericin cocoons has been studied in South Korea. In this preliminary study, the crystallinity, mechanical properties, and dissolution conditions of sericin from Sericinjam cocoons were examined. The Sericinjam cocoon could be dissolved in water at high temperature (120℃) and high pressure (HTHP method) in an autoclave and in a CaCl2/H2O/EtOH mixture (ternary solvent method), resulting in 82% and 97% dissolution after 30 min, respectively. The solution viscosity of the silk sericin formic acid (SSFA) solution obtained from sericin extracted using the ternary solvent method was higher than that obtained using the HTHP method; however, SSFA solutions obtained from sericin extracted from conventional Baekokjam cocoons yielded a higher solution viscosity. The crystallinity and breaking strength of the sericin film from Sericinjam cocoons were slightly lower, respectively, than those from Baekokjam cocoons. In contrast, the elongation at break of the Sericinjam sericin film obtained using the HTHP method was higher than that of the Baekokjam sericin film.

3CaO.$SiO_2$의 구조전이에 미치는 $BaSO_4$의 영향 (The Effect of Barium Sulfate on the Structural Transformations in Tricalcium Silicate)

  • 서일영;최상흘
    • 한국세라믹학회지
    • /
    • 제11권2호
    • /
    • pp.17-21
    • /
    • 1974
  • Miscibility of barium sulfate in tricalcium silicate was investigated by firing 3CaCO3·SiO2 mixture containing barium sulfate at 1530℃. Added amount of barium sulfate to the mixture was zero to 5 mole % with intervals of 1 mole %. Lattice parametres were also calculated. Results were as follow; 1) Dissolution of barium sulfate in tricalcium silicate does not alter the symmetry in room temperature, but influences it's polymorphic transition forms, temperatures and thermal effects; modification triclinic Ⅱ is stabilized in room temperature. 2) Barium sulfate dissolves about up to 2 mole % in tricalcium silicate and more than this amount, tricalcium silicate formation is inhibited. 3) Unit cell volume of tricalcium silicate is slightly decreased with dissolution of barium sulfate, mainly because of contraction in c axis.

  • PDF

Effect of the Cooling Rates on the Corrosion Resistance and Phase Transformation of 14Cr-3Mo Martensitic Stainless Steel

  • Park, Jee-Yong;Park, Yong-Soo
    • Corrosion Science and Technology
    • /
    • 제5권1호
    • /
    • pp.1-4
    • /
    • 2006
  • Martensitic stainless steel is used when mechanical properties such as high tensile strength and hardness are required. Medium carbon-contained martensitic stainless steel which contains more than 0.2 wt% of carbon should be heat-treated and quenched at the temperature where undissolved carbides are totally dissolved into the matrix. In particular, the dissolution and reprecipitation behaviors of various forms of carbides are affected by such parameters as heating rate, heating temperature, duration time and cooling rate. This study is to investigate the effects of heat treatment parameters of 14Cr-3Mo martensitic stainless on corrosion resistance and phase transformation in relation to the dissolution and reprecipitation of carbides.