• 제목/요약/키워드: dissipation rate

검색결과 461건 처리시간 0.026초

HEATING OF SUNSPOT CHROMOSPHERES BY SLOW-MODE ACOUSTIC SHOCK WAVES

  • Lee, Myung-Gyoon;Yun, Hong-Sik
    • 천문학회지
    • /
    • 제18권1호
    • /
    • pp.15-31
    • /
    • 1985
  • Making use of the arbitrary shock theory developed by Ulmschneider (1967, 1971) and Ulmschneider and Kalkofen (1978), we have calculated the dissipation rates of upward-travelling slow-mode acoustic shock waves in umbral chromospheres for two umbral chromosphere models, a plateau model by Avrett (1981) and a gradient model by Yun and Beebe (1984). The computed shock dissipation rates are compared with the radiative cooling rate given by Avrett (1981). The results show that the slow-mode acoustic shock waves with a period of about 20 second can heat the low umbral chromospheres travelling with a mechanical energy flux of $2.6{\times}10^6\;erg/cm^2s$ at a height of $300{\sim}400km$ above the temperature minimum region.

  • PDF

전도손실 저감 및 효율 상승을 위한 PWM DC-DC 컨버터의 특성 (Character of PWM DC-DC Converter for Conduction Loss Reduction and Efficiency Rise)

  • 김영문;김해재;김칠용;류재엽;김수욱
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.125-127
    • /
    • 2007
  • Presented increase and so on of switch stress and switching dissipation and EMI that is happened in general PWM converter and in this study to solve problem the resonance energy return to life rate and new active snubber PWM converter because do maximization. Active snubber PWM converter that try adds auxiliary switch and resonance capacitor, diode to existing converter under all switching conditions turn on/off Minimised switching dissipation that occur. Reduced harmonic components absorbing station recovery electric current that happen to snubber diode inserting diode and resistance. And decreased peak current that is happened in auxiliary switch arranging resonance capacitor and inductor properly, Certified effect that efficiency rises about 2.5[%] more than existent PWM converter in rated load through an experiment.

  • PDF

강체 블록의 비선형 로킹진동특성에 관한 연구 (미끄럼이 있는 경우) (A Study on Nonlinear Rocking Vibration Characteristics of Rigid Block (In the Case of Sliding Occurrence))

  • 정만용;김정호;김선규;나기대;양인영
    • 한국안전학회지
    • /
    • 제15권1호
    • /
    • pp.1-10
    • /
    • 2000
  • This paper deals with rocking response behavior of rigid block structure subjected to horizontal excitation. A strict consideration of impact and sliding between the block and base is essential to investigate the rocking vibration characteristics because the rocking behavior were greatly influenced by the impact and sliding motion. Therefore, not only restitution coefficient between the block and base but also the energy dissipation rate which is associated with sliding motion, and the static and kinetic friction coefficient between those should be included in the modeling of rocking system. The analytic program was developed to be able to simulate the experimental responses of the block subjected to horizontal sinusoidal excitations. By using this program, rocking responses were numerically calculated by the nonlinear equations for rocking system. From the response simulation and rocking vibration experiment, the following results were obtained. The rocking responses are affected by the impact motion due to energy dissipation and friction and provide very complex behavior. The toppling condition of the block is also influenced by the impact motion and sliding motion.

  • PDF

Entropy analysis in a cilia transport of nanofluid under the influence of magnetic field

  • Abrar, Muhammad N.;Haq, Rizwan Ul;Awais, Muhammad;Rashid, Irfan
    • Nuclear Engineering and Technology
    • /
    • 제49권8호
    • /
    • pp.1680-1688
    • /
    • 2017
  • In this study, analysis is performed on entropy generation during cilia transport of water based titanium dioxide nanoparticles in the presence of viscous dissipation. Moreover, thermal heat flux is considered at the surface of a channel with ciliated walls. Mathematical formulation is constructed in the form of nonlinear partial differential equations. Making use of suitable variables, the set of partial differential equations is reduced to coupled nonlinear ordinary differential equations. Closed form exact solutions are obtained for velocity, temperature, and pressure gradient. Graphical illustrations for emerging flow parameters, such as Hartmann number (Ha), Brinkmann number (Br), radiation parameter (Rn), and flow rate, have been prepared in order to capture the physical behavior of these parameters. The main goal (i.e., the minimizing of entropy generation) of the second law of thermodynamics can be achieved by decreasing the magnitude of Br, Ha and ${\Lambda}$ parameters.

A Power-Efficient CMOS Adaptive Biasing Operational Transconductance Amplifier

  • Torfifard, Jafar;A'ain, Abu Khari Bin
    • ETRI Journal
    • /
    • 제35권2호
    • /
    • pp.226-233
    • /
    • 2013
  • This paper presents a two-stage power-efficient class-AB operational transconductance amplifier (OTA) based on an adaptive biasing circuit suited to low-power dissipation and low-voltage operation. The OTA shows significant improvements in driving capability and power dissipation owing to the novel adaptive biasing circuit. The OTA dissipates only $0.4{\mu}W$ from a supply voltage of ${\pm}0.6V$ and exhibits excellent high driving, which results in a slew rate improvement of more than 250 times that of the conventional class-AB amplifier. The design is fabricated using $0.18-{\mu}m$ CMOS technology.

Battery Equalization Method for Parallel-connected Cells Using Dynamic Resistance Technique

  • La, Phuong-Ha;Choi, Sung-Jin
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2018년도 추계학술대회
    • /
    • pp.36-38
    • /
    • 2018
  • As the battery capacity requirement increases, battery cells are connected in a parallel configuration. However, the sharing current of each battery cell becomes unequal due to the imbalance between cell's impedance which results the mismatched states of charge (SOC). The conventional fixed-resistance balancing methods have a limitation in battery equalization performance and system efficiency. This paper proposes a battery equalization method based on dynamic resistance technique, which can improve equalization performance and reduce the loss dissipation. Based on the SOC rate of parallel connected battery cells, the switches in the equalization circuit are controlled to change the equivalent series impedance of the parallel branch, which regulates the current flow to maximize SOC utilization. To verify the method, operations of 4 parallel-connected 18650 Li-ion battery cells with 3.7V-2.6Ah individually are simulated on Matlab/Simulink. The results show that the SOCs are balanced within 1% difference with less power dissipation over the conventional method.

  • PDF

리브를 활용한 압축기 냉각 효율 향상에 관한 연구 (Improvement of Compressor-Cooling Efficiency Based on Ribs)

  • 황일선;이영림
    • 한국기계가공학회지
    • /
    • 제20권6호
    • /
    • pp.70-75
    • /
    • 2021
  • Recently, several efforts have been made to improve the thermal efficiency of a refrigerant compressor. In this study, we attempted to improve energy efficiency ratio (EER) performance by reducing the superheat of the linear compressor. To this end, heat generated inside the compressor must be effectively dissipated. Therefore, heat dissipation was improved by processing ribs in the gap-flow region generated owing to the vibration of the compressor body. The results showed that the convective heat transfer coefficient becomes significantly high when ribs are used, increasing the heat dissipation rate. This helps improve EER by reducing the superheat of the compressor.

The effects of thermo-mechanical behavior of living tissues under thermal loading without energy dispassion

  • Ibrahim Abbas;M. Saif AlDien;Mawahib Elamin;Alaa El-Bary
    • Coupled systems mechanics
    • /
    • 제13권1호
    • /
    • pp.61-72
    • /
    • 2024
  • This study seeks to develop analytical solutions for the biothermoelastic model without accounting for energy dissipation. These solutions are then applied to estimate the temperature changes induced by external heating sources by integrating relevant empirical data characterizing the biological tissue of interest. The distributions of temperature, displacement, and strain were obtained by utilizing the eigenvalues approach with the Laplace transforms and numerical inverse transforms method. The impacts of the rate of blood perfusion and the metabolic activity parameter on thermoelastic behaviors were discussed specifically. The temperature, displacement, and thermal strain results are visually represented through graphical representations.

시설재배 브로콜리 중 Indoxacarb 및 Pymetrozine의 잔류 소실특성 (Residue Dissipation Patterns of Indoxacarb and Pymetrozine in Broccoli under Greenhouse Conditions)

  • 양승현;이재인;최훈
    • 한국환경농학회지
    • /
    • 제39권1호
    • /
    • pp.75-82
    • /
    • 2020
  • 본 연구에서는 시설재배 하는 브로콜리 중 indoxacarb 및 pymetrozine의 경시적 잔류변화를 조사하여 생물학적 반감기와 감소상수를 산출하여 생산단계 잔류허용기준(PHRL)을 설정하고자 하였다. 포장시험은 충주시(포장 1) 및 군산시(포장 2)에 소재한 시설재배지에서 수행되었으며 약제살포 후 0, 1, 2, 3, 5, 7, 10일차에 시료를 채취하여 분석하였다. 브로콜리 중 잔류량은 HPLC-DAD로 분석하였으며, indoxacarb 및 pymetrozine의 회수율은 각각 94.3~105.4% 및 81.8~96.0%이었으며, MLOQ (Method Limit of quantitation)는 모두 0.05 mg/kg이었다. 브로콜리 중 indoxacarb 및 pymetrozine의 생물학적 반감기는 각각 2.9일, 3.2~3.8일이었으며, 감소상수의 95% 신뢰수준 하한치는 indoxacarb 0.1508 및 0.2017, pymetrozine 0.1489 및 0.1577로써 포장별, 약제별 유의적 차이(p<0.05)가 없었다. 브로콜리 중 농약 잔류량 소실특성의 주요 요인은 증체로 인한 희석효과이었으며, 브로콜리의 수확 10일전 PHRL은 indoxacarb의 경우 30.06(포장 1) 및 18.07(포장 2) mg/kg이었고, pymetrozine은 4.84(포장 1) 및 4.43(포장 2) mg/kg이었다.

A High Data Rate, High Output Power 60 GHz OOK Modulator in 90 nm CMOS

  • Byeon, Chul Woo;Park, Chul Soon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제17권3호
    • /
    • pp.341-346
    • /
    • 2017
  • In this paper, we present a 60 GHz on-off keying (OOK) modulator in a 90 nm CMOS. The modulator employs a current-reuse technique and a switching modulation for low DC power dissipation, high on/off isolation, and high data rate. The measured gain of the modulator, on/off isolation, and output 1-dB compression point is 9.1 dB, 24.3 dB, and 5.1 dBm, respectively, at 60 GHz. The modulator consumes power consumption of 18 mW, and is capable of handling data rates of 8 Gb/s at bit error rate of less than $10^{-6}$ for $231^{-1}$ PRBS over a distance of 10-cm with an OOK receiver module.