• 제목/요약/키워드: dissipation

검색결과 3,468건 처리시간 0.025초

회전하는 타이어의 변형에너지 손실에 의한 온도분포 해석 (Analysis of Temperature Distribution in a Rolling Tire due to Strain Energy Dissipation)

  • 박현철;윤성기;송태석;김남전
    • 대한기계학회논문집A
    • /
    • 제21권5호
    • /
    • pp.746-755
    • /
    • 1997
  • This paper addresses the systematic procedure using sequential approach for the analysis of the coupled thermo-mechanical behavior of a steady rolling tire. Not only the knowledge of mechanical stresses but also of the temperature loading in a rolling tire are very important because material damage and material properties are significantly affected by the temperature. In general, the thermo-mechanical behavior of a pneumatic tire is highly complex transient phenomenon that requires the solution of a dynamic nonlinear coupled themoviscoelasticity problem with heat source resulting from internal dissipation and friction. In this paper, a sequential approach, with effective calculation schemes, to modeling this system is presented in order to predict the temperature distribution with reasonable sccuracies in a steady state rolling tire. This approach has the three major analysis modules-deformation, dissipation, and thermal modules. In the dissipation module, an analytic method for the calculation of the heat source in a rolling tire is established using viscoelastic theory. For the verification of the calculated temperature profiles and rolling resistance at different velocities, they were compared with the measured ones.

Shaking table test and numerical analysis of a combined energy dissipation system with metallic yield dampers and oil dampers

  • Zhou, Qiang;Lu, Xilin
    • Structural Engineering and Mechanics
    • /
    • 제17권2호
    • /
    • pp.187-201
    • /
    • 2004
  • A shaking table test on a three-story one-bay steel frame model with metallic yield dampers and their parallel connection with oil dampers is carried out to study the dynamic characteristics and seismic performance of the energy dissipation system. It is found from the test that the combined energy dissipation system has favorable reducing vibration effects on structural displacement, and the structural peak acceleration can not evidently be reduced under small intensity seismic excitations, but in most cases the vibration reduction effect is very good under large intensity seismic excitations. Test results also show that stiffness of the energy dissipation devices should match their damping. Dynamic analysis method and mechanics models of these two dampers are proposed. In the analysis method, the force-displacement relationship of the metallic yield damper is represented by an elastic perfectly plastic model, and the behavior of the oil damper is simulated by a velocity and displacement relative model in which the contributions of the oil damper to the damping force and stiffness of the system are considered. Validity of the analytical model and the method is verified through comparison between the results of the shaking table test and numerical analysis.

HEV용 인버터의 방열을 위한 수냉식 배관구조 (Water Cooling Pipe Structure for Heat-Dissipation of HEV Inverter System)

  • 김경만;우병국;이용화;강찬호;전태원;조관열
    • 전력전자학회논문지
    • /
    • 제15권1호
    • /
    • pp.27-34
    • /
    • 2010
  • 하이브리드 전기자동차(HEV)용 인버터의 스위칭 소자에서 발생하는 열을 효율적으로 냉각시키기 위한 수냉식구조를 제안한다. 기존의 볼트형 냉각구조는 강한 수압에서 누수현상이 발생할 수 있으므로 본 논문에서는 이를 방지하기 위해 방열판 내에 파이프 형태의 구조를 적용하였다. 발열원을 기준으로 수로의 이격거리 변화와 여러 형태의 수로에 대해 방열현상을 시뮬레이션으로 해석하고, 방열효과가 우수한 2가지 배관구조 모델을 기준으로 방열효과를 비교 분석하였다. 시뮬레이션 결과를 토대로 2가지 배관구조를 적용한 HEV용 30kW급 인버터를 제작하여 방열효과를 검증하였다.

Eddy Dissipation Concept 연소모델을 적용한 백드래프트 대와동모사 연구 (Large Eddy Simulation of Backdraft Using the Eddy Dissipation Concept Combustion Model)

  • 하수임;오창보
    • 한국화재소방학회논문지
    • /
    • 제33권5호
    • /
    • pp.48-54
    • /
    • 2019
  • 본 연구에서는 Eddy Dissipation Concept (EDC) 1-step 연소모델을 이용하여 백드래프트에 대한 대와동모사를 성공적으로 수행하였다. 기존 연구와는 달리 EDC 1-step의 유한화학반응에서 활성화에너지를 적절히 조절함으로써 백드래프트에 대한 예측이 가능하였다. EDC 1-step 연소모델을 이용한 예측결과는 Mixing-Controlled Fast Chemistry(MCFC) 연소모델의 예측결과와 비교 검토되었다. 얻어진 결과에서는 백드래프트 발생 시점을 제외하면 EDC 1-step과 MCFC 결과들은 매우 유사한 것을 확인하였고, 실험에서 얻어진 최고 압력값에 대해서도 합리적인 수준에서 예측하는 것은 알 수 있었다. 그러나 EDC 1-step 연소모델도 MCFC와 마찬가지로 백드래프트 전개과정의 첫 번째 압력 피크에 대해서는 예측하지 못하는 한계를 확인할 수 있었다.

멀티코어 프로세서의 전력 소비에 대한 연구 (A Study on Power Dissipation of The Multicore Processor)

  • 이종복
    • 한국인터넷방송통신학회논문지
    • /
    • 제17권2호
    • /
    • pp.251-256
    • /
    • 2017
  • 최근에 이르러, 범용 컴퓨터 뿐만이 아니라 임베디드 시스템 및 모바일 장치에서도 광범위하게 멀티코어 프로세서가 이용되어 그 성능이 증대되고 있다. 이러한 멀티코어 프로세서 시스템의 전력 소비량이 매우 중요하므로, 설계의 초기 단계에서 그 값을 정확하게 예측할 수 있어야 한다. 본 논문에서는 멀티코어 프로세서에 대하여 빠른 속도를 갖는 명령어 자취형 (trace-driven) 모의실험기 기반의 전력 분석기를 개발하였다. 이 때, 각 코어를 구성하는 하드웨어 유닛별 소비전력을 계산하여 합산하였다. 또한, SPEC 2000 벤치마크를 입력으로 모의실험을 수행하여 명령어 당평균 전력 소비량을 측정하였다.

Numerical verification of a dual system's seismic response

  • Phocas, Marios C.;Sophocleous, Tonia
    • Earthquakes and Structures
    • /
    • 제3권5호
    • /
    • pp.749-766
    • /
    • 2012
  • Structural control through integration of passive damping devices within the building structure has been increasingly implemented internationally in the last years and has proven to be a most promising strategy for earthquake safety. In the present paper an alternative configuration of an innovative energy dissipation mechanism that consists of slender tension only bracing members with closed loop and a hysteretic damper is investigated in its dynamic behavior. The implementation of the adaptable dual control system, ADCS, in frame structures enables a dual function of the component members, leading to two practically uncoupled systems, i.e., the primary frame, responsible for the normal vertical and horizontal forces and the closed bracing-damper mechanism, for the earthquake forces and the necessary energy dissipation. Three representative international earthquake motions of differing frequency contents, duration and peak ground acceleration have been considered for the numerical verification of the effectiveness and properties of the SDOF systems with the proposed ADCS-configuration. The control mechanism may result in significant energy dissipation, when the geometrical and mechanical properties, i.e., stiffness and yield force of the integrated damper, are predefined. An optimum damper ratio, DR, defined as the ratio of the stiffness to the yield force of the hysteretic damper, is proposed to be used along with the stiffness factor of the damper's- to the primary frame's stiffness, in order for the control mechanism to achieve high energy dissipation and at the same time to prevent any increase of the system's maximum base shear and relative displacements. The results are summarized in a preliminary design methodology for ADCS.

A load-bearing structural element with energy dissipation capability under harmonic excitation

  • Pontecorvo, Michael E.;Barbarino, Silvestro;Gandhi, Farhan S.;Bland, Scott;Snyder, Robert;Kudva, Jay;White, Edward V.
    • Advances in aircraft and spacecraft science
    • /
    • 제2권3호
    • /
    • pp.345-365
    • /
    • 2015
  • This paper focuses on the design, fabrication, testing and analysis of a novel load-bearing element with energy dissipation capability. A single element comprises two von-Mises trusses (VMTs), which are sandwiched between two plates and connected to dashpots that stroke as the VMTs cycle between stable equilibrium states. The elements can be assembled in-plane to form a large plate-like structure or stacked with different properties in each layer for improved load-adaptability. Also introduced in the elements are pre-loaded springs (PLSs) that provide high initial stiffness and allow the element to carry a static load even when the VMTs cannot under harmonic disturbance input. Simulations of the system behavior using the Simscape environment show good overall correlation with test data. Good energy dissipation capability is observed over a frequency range from 0.1 Hz to 2 Hz. The test and simulation results show that a two layer prototype, having one soft VMT layer and one stiff VMT layer, can provide good energy dissipation over a decade of variation in harmonic load amplitude, while retaining the ability to carry static load due to the PLSs. The paper discusses how system design parameter changes affect the static load capability and the hysteresis behavior.

고출력 슁글드 태양광 모듈의 온도 저감에 따른 출력 특성 분석 (Analysis of Output Characteristics of High-Power Shingled Photovoltaic Module due to Temperature Reduction)

  • 배재성;유장원;지홍섭;이재형
    • 한국전기전자재료학회논문지
    • /
    • 제33권6호
    • /
    • pp.439-444
    • /
    • 2020
  • An increase in the temperature of photovoltaic (PV) modules causes reduced power output and shorter lifetime. Because of these characteristics, demands for the heat dissipation of PV modules are increasing. In this study, we attached a heat dissipation sheet to the back sheet of a shingled PV module and observed the temperature changes. The PV shingled module was tested under Standard Test Conditions (STCs; irradiance: 1,000 W/㎡, temperature: 25℃, air mass: 1.5) using a solar radiation tester, wherein the temperature of the PV module was measured by irradiating light for a certain duration. As a result, the temperature of the PV module with the heat dissipation sheet decreased by 3℃ compared to that without a heat dissipation sheet. This indicated that the power loss was caused by a temperature increase of the PV module. In addition, it was confirmed that the primary parameter contributing to the reduced PV module output power was the open circuit voltage (Voc).

Parametric study of energy dissipation mechanisms of hybrid masonry structures

  • Gao, Zhenjia;Nistor, Mihaela;Stanciulescu, Ilinca
    • Structural Engineering and Mechanics
    • /
    • 제78권4호
    • /
    • pp.387-401
    • /
    • 2021
  • This paper provides a methodology to analyze the seismic performance of different component designs in hybrid masonry structures (HMS). HMS, comprised of masonry panels, steel frames and plate connectors is a relatively new structural system with potential applications in high seismic areas. HMS dissipate earthquake energy through yielding in the steel components and damage in the masonry panels. Currently, there are no complete codes to assist with the design of the energy dissipation components of HMS and there have been no computational studies performed to aid in the understanding of the system energy dissipation mechanisms. This paper presents parametric studies based on calibrated computational models to extrapolate the test data to a wider range of connector strengths and more varied reinforcement patterns and reinforcement ratios of the masonry panels. The results of the numerical studies are used to provide a methodology to examine the effect of connector strength and masonry panel design on the energy dissipation in HMS systems. We use as test cases two story structures subjected to cyclic loading due to the availability of experimental data for these configurations. The methodology presented is however general and can be applied to arbitrary panel geometries, and column and story numbers.

Cyclic testing of a new visco-plastic damper subjected to harmonic and quasi-static loading

  • Modhej, Ahmad;Zahrai, Seyed Mehdi
    • Structural Engineering and Mechanics
    • /
    • 제81권3호
    • /
    • pp.317-333
    • /
    • 2022
  • Visco-Plastic Damper (VPD) as a passive energy dissipation device with dual behavior has been recently numerically studied. It consists of two bent steel plates and segments with a viscoelastic solid material in between, combining and improving characteristics of both displacement-dependent and velocity-dependent devices. In order to trust the performance of VPD, for the 1st time this paper experimentally investigates prototype damper behavior under a wide range of frequency and amplitude of dynamic loading. A high-axial damping rubber is innovatively proposed as the viscoelastic layer designed to withstand large axial strains and dissipate energy accordingly. Test results confirmed all assumptions about VPD. The behavior of VPD subjected to low levels of excitation is elastic while with increasing levels of excitation, a significant source of energy dissipation is provided through the yielding of the steel elements in addition to the viscoelastic energy dissipation. The results showed energy dissipation of 99.35 kN.m under a dynamic displacement with 14.095 mm amplitude and 0.333 Hz frequency. Lateral displacement at the middle of the device was created with an amplification factor obtained ranging from 2.108 to 3.242 in the rubber block. Therefore, the energy dissipation of viscoelastic material of VPD was calculated 18.6 times that of the ordinary viscoelastic damper.