• 제목/요약/키워드: dissimilar Al alloy

검색결과 49건 처리시간 0.027초

고상접합을 이용한 Al/Mg 합금의 이종 용접 (Solid State Joining Processes for Dissimilar Joints of Mg/Al Alloys)

  • 김흥주;김성욱;천창근;장웅성
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2009년 추계학술발표대회
    • /
    • pp.41-41
    • /
    • 2009
  • To evaluate the applicability of dissimilar joining between Mg and Al alloys in automobile manufacturing process, solid state joining processes such as magnetic pulse welding(MPW), friction stir welding(FSW) and friction spot joining(FSJ) were attempted successfully. MPW process has been concentrated mainly on round section tube to tube and tube to bar welds. AZ31 Mg alloy has been successfully welded to pure Al A1070 as well as to Al alloy A3003. While, for friction stir welding of dissimilar sheet joints, AZ31B/A6061 with the thickness of 2mm were used and a square butt joint with a good quality was obtained at the conditions of 0.8mm/sec of travel speed and tool rotation speed of 850rpm. The maximum tensile strength of 179 MPa, which was about 80 % of the Mg base metal tensile strength, has been obtained. Finally, friction spot joining was attempted to make a dissimilar lap joint between AZ31(0.8mm) and A6061(1mm), while the joint exhibited the same level of tensile shear strength as that of similar Mg joint.

  • PDF

이종 알루미늄 합금의 로봇 미그 용접 시 용접재료에 따른 기계적 및 전기화학적 특성 평가 (Mechanical and electrochemical characteristics with welding materials in robotic MIG welding of dissimilar Al alloys)

  • 김성종;한민수;우용빈
    • Corrosion Science and Technology
    • /
    • 제12권5호
    • /
    • pp.245-252
    • /
    • 2013
  • In this study, mechanical and electrochemical characteristics with welding material in MIG welded with ROBOT for dissimilar Al alloys were investigated using various experiment methods. The MIG welding by ROBOT with ER5183 and ER5556 for the 5456-H116 and 6061-T6 Al alloy were carried out. The hardness of welding zone was lower than that of base metal. In electrochemical experiment, ER5183 welding material presented excellent characteristics. The yield strength and maximum tensile strength in welding with welding material of ER5183 presented lower value than those of ER5556. The elongation and time-to-fracture showed the opposite results.

구리-알루미늄 이종재료의 브레이징 특성 향상에 관한 연구 (Study on the Improvement of Brazeability for Copper-Aluminum Dissimilar Materials Joint)

  • 정호신;배동수;고성우
    • 한국해양공학회지
    • /
    • 제15권3호
    • /
    • pp.49-57
    • /
    • 2001
  • One of the most important considerations to braze Cu-Al dissimilar materials is control of brittle metallic compound which makes it difficult to obtain a sound brazed joint. Nowdays, several attempts were made to control the metallic compound. But effective method for controlling metallic compound was not established. In this point of view, commercially pure aluminum and copper were used as base metal and Al-Si-X and Zn-Al-X alloy systems were developed as filler metal. Brazing was carried out to find optimum conditions for Cu-Al dissimilar joint. The results obtained in this study were summarized as follows: 1) The joint brazed by Al-Si-X filler metal showed good brazeability and mechanical properties. The tensile strength of the joint brazed over solidus temperature was more than 90% of Al base metal. Especially, the joint brazed at liquidus temperature was fractured in the Al base metal. 2) Fluorides fluxes(a mixture of potassium fluoro-aluminates) were used to improve surface cleanliness of base metal and wettability of Al-Si-X filler metal. It was melted at the temperature about 1$0^{\circ}C$ lower than that of the filler metal, and made appropriate brazing environment. Therefore, it could be a proper selection as flux.

  • PDF

2024 Al합금과 아연도금강판의 점용접에 관한 품질평가 (The Quality Evaluation on Resistance Spot Welding of 2024 Aluminum Alloy and Zinc Coated Steel)

  • 허인호;이철구;채병대
    • Journal of Welding and Joining
    • /
    • 제19권4호
    • /
    • pp.379-383
    • /
    • 2001
  • Resistance spot welding has been widely used in the sheet metal joining processes because of low cost, high productivity and convenience. Recently, automobile and aerospace industries are trying to replace partly steel sheets with aluminum alloy sheets. But in the case of dissimilar materials, to apply resistance spot welding has been known to be very difficult owing to the effect of melting temperature. On this study, an effort was made to apply spot welding of dissimilar sheet metals, 2024 aluminum alloy and zinc coated steel sheet, evaluate the spot weld quality with tensile-shear strength test and nondestructive evaluation technique, C-scan image methodology. In this study results, as the current below 11 kA, melting of materials is not achieved well. Also as the current exceeds to 13.5 kA, the more spatters happen at welded zone and tensile-shear strength lowered. So, the feasibility of C-scan image technique proposed in the study is found to be suitable evaluation method for resistance spot weldability.

  • PDF

유리섬유 강화 플라스틱과 알루미늄 합금 접합을 위한 유한요소해석 (Finite element analysis for joining glass fiber reinforced plastic and aluminium alloy sheets)

  • 조해용;김동범
    • Journal of Welding and Joining
    • /
    • 제33권2호
    • /
    • pp.78-84
    • /
    • 2015
  • Self-piercing rivet(SPR) is mechanical joining methods and which can be joining dissimilar materials. Unlike conventional riveting, SPR also needs no pre-drilled holes. During plastically deformation, SPR pierces upper sheet and joins it to under sheet. SPR has been mainly applied to the joining the automobile body and some materials, such as glass fiber reinforced polymer and aluminum alloy, which represent the sheet-formed materials for lightweight automobile. Glass fiber reinforced plastic(GFRP) has been considered as a partial application of the automobile body which is lighter than steels and stronger than aluminium alloys. It is needed SPR to join Al alloy sheets and GFRP ones. In this paper, in order to design the rivet and anvil, which are suitable for GFRP, the joinability was examined through simulations of SPR joining between GFRP and Al alloy sheets. For this study, AutoCAD was used for the modeling and the simulated using commercial FEM code DEFORM-2D. The simulated results for SPR process joining between GFRP and Al alloys were confirmed by the same conditions as experimental trials.

알루미늄 기반 Advanced Multi-Material 기술의 선진 동향 (Trends of Advanced Multi-Material Technology for Light Materials based on Aluminum)

  • 이목영;정성훈
    • Journal of Welding and Joining
    • /
    • 제34권5호
    • /
    • pp.19-25
    • /
    • 2016
  • Global warming is hot issue to keep the earth everlastingly. Despite the increase of the world population and the energy demand, the world oil supply and the oil price are hold the steady state. If we are not decrease the world population and the energy consumption, unforeseeable energy crisis will come in the immediate future. AMT acronym of Advanced Materials for Transportation is a non-profitable IEA-affiliated organization to mitigate the oil consumption and the environment contamination for the transportation. In recent, Annex X Multi-materials Joining was added to enhance the car body weight reduction cause the high fuel efficiency and the low emission of exhaust gas. Multi-materials are the advanced materials application technology to optimize the weight, the performance and the cost with the combination of different materials such as Al-alloy, Mg- alloy, AHSS and CFRP. In this study, the trends of AMT strategy and Al-alloy based multi-materials joining technology were review. Also several technologies for Al-alloy dissimilar joining were investigated.

마찰교반접합한 알루미늄 합금과 스테인리스 강 이종접합부 계면 조직 및 접합부 강도 (Interface Analysis and Mechanical Properties of Friction Stir Welded Dissimilar joints between Stainless steel and AI alloy)

  • 이원배;이창용;연윤모;정승부
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 추계학술발표대회 개요집
    • /
    • pp.189-191
    • /
    • 2005
  • Dissimilar joining of AI 6013-T4 alloys and austenite stainless steel was carried out using friction stir welding technique. Microstructures near the weld zone and mechanical properties of the joint have been investigated. Microstructures in the stainless steel side and AI alloy were depended on the thermo-mechanical condition which they received. TEM micrographs revealed that the interface region was composed of the mixed layers of elongated stainless steel and ultra-fine grained AI alloy and intermetallic compound layer which was identified as the $Al_{4}Fe$ with hexagonal close packed structure. Mechanical properties were lower than those of 6013 AI alloy base metal, because tool inserting location was deviated to AI alloy from the butt line, which resulted in the lack of the stirring.

  • PDF

희생양극 하에서 알루미늄의 해수 부식 거동 (Corrosion Behavior of Aluminium Coupled to a Sacrificial Anode in Seawater)

  • 김종수;김희산
    • 한국표면공학회지
    • /
    • 제39권1호
    • /
    • pp.25-34
    • /
    • 2006
  • Al-Mg alloy, an open rack vaporizer(ORV) material was reported to be corroded in seawater environments though the ORV material was coupled to thermally sprayed Al-Zn alloy functioning a sacrificial anode. In addition, the corrosion behavior based on the calculated corrosion potential did not match the observed corrosion behavior. Hence, the goal of this study is to get better understanding on Al or Al-Mg alloy coupled to Al-Zn alloy and to provide the calculated corrosion potential representing the corrosion behavior of the ORV material by immersion test, electrochemical tests, and calculation of corrosion and galvanic potential. The corrosion potentials of Al and Al alloys also depended on alloying element as well as surface defects. The corrosion potentials of Al and Al-Mg alloy were changed with time. In the meantime, the corrosion potentials of Al-Zn alloys were not. The corrosion rates of Al-Zn alloys were exponentially increased with zinc contents. The phenomena were explained with the stability of passive film proved by passive current density depending on pH and confirmed by the model proposed by McCafferty. Dissimilar material crevice corrosion (DMCC) test shows that higher content of zinc caused Al-Mg alloy corroded more rapidly, which was due to the fact that higher corrosion rate of Al-Zn makes [$H^+$] and [$Cl^-$] more concentrated within pit solution to corrode Al-Mg alloy. Considering electrochemical reactions within pit as well as bulk in the calculation gives better prediction on the corrosion behavior of Al and Al-Mg alloy as well as the capability of Al-Zn alloy for corrosion protection.