• 제목/요약/키워드: disposal behavior

검색결과 227건 처리시간 0.024초

패션 스트레스는 어떻게 측정할 수 있는가? 패션 스트레스의 다차원 척도 개발 및 타당화 (How to measure fashion stress? Development and validation of a multidimensional scale for fashion stress)

  • 석효정;이은진
    • 복식문화연구
    • /
    • 제32권2호
    • /
    • pp.181-198
    • /
    • 2024
  • Fashion stress is a pertinent aspect of modern consumer culture that has been underexplored in academic research. This study developed a conceptual framework of fashion stress and a multidimensional scale to measure consumers' fashion stress. The qualitative study included literature reviews on consumption stress, shopping stress, and consumer behavior, as well as focus group interviews to gain insight into various dimensions of fashion stress. NVivo 12.0 was used to analyze the qualitative data and identify core categories following the grounded theory methodology. The quantitative study involved a preliminary and a primary surveys to verify the validity and reliability of the fashion stress scale. A total of 220 questionnaires were used for data analysis. The results show that fashion stress consists of eight factors: care, shopping, fit, brand, financial, closet, style, and disposal. Choice difficulty plays a significant role in all factors of fashion stress. Moreover, shopping stress had a negative impact on impulse buying, while other factors such as fit, brand, closet, and disposal stress had a positive impact on impulse buying. Thus, fashion stress is a potential antecedent of impulsive consumer behavior. The results also confirm the validity and reliability of the scale. The fashion stress scale developed in this study offers researchers a valuable tool for assessing and understanding consumer experiences.

Corrosion Behavior of Cu-Ni Alloy Film Fabricated by Wire-fed Additive Manufacturing in Oxic Groundwater

  • Gha-Young Kim;Jeong-Hyun Woo;Junhyuk Jang;Yang-Il Jung;Young-Ho Lee
    • 방사성폐기물학회지
    • /
    • 제22권2호
    • /
    • pp.211-217
    • /
    • 2024
  • The growing significance of sustainable energy technologies underscores the need for safe and efficient management of spent nuclear fuels (SNFs), particularly via deep geological disposal (DGD). DGD involves the long-term isolation of SNFs from the biosphere to ensure public safety and environmental protection, necessitating materials with high corrosion resistance for DGD canisters. This study investigated the feasibility of a Cu-Ni film, fabricated via additive manufacturing (AM), as a corrosion-resistant layer for DGD canister applications. A wire-fed AM technique was used to deposit a millimeter-scale Cu-Ni film onto a carbon steel (CS) substrate. Electrochemical analyses were conducted using aerated groundwater from the KAERI underground research tunnel (KURT) as an electrolyte with an NaCl additive to characterize the oxic corrosion behavior of the Cu-Ni film. The results demonstrated that the AM-fabricated Cu-Ni film exhibited enhanced corrosion resistance (manifested as lower corrosion current density and formation of a dense passive layer) in an NaCl-supplemented groundwater solution. Extensive investigations are necessary to elucidate microstructural performance, mechanical properties, and corrosion resistance in the presence of various corroding agents to simplify the implementation of this technology for DGD canisters.

Multiscale modeling of smectite illitization in bentonite buffer of engineered barrier system

  • Xinwei Xiong;Jiahui You;Kyung Jae Lee;Jin-Seop Kim
    • Nuclear Engineering and Technology
    • /
    • 제56권8호
    • /
    • pp.3242-3254
    • /
    • 2024
  • With the increasing usage of nuclear energy, how to properly dispose nuclear waste becomes a critical issue. In this study, a multiscale modeling approach combining the experimental findings is presented to address the illitization process, its impact on transport properties, and system behavior of bentonite buffer in engineered barrier systems (EBS). Through the pore-scale modeling, reactive transport properties such as illite generation rate and effective diffusion coefficient of potassium ion as a function of porosity and temperature are quantified by employing the findings of hydrothermal reaction experiments of Bentonil-WRK. The capability of pore-scale modeling has been developed based on the Darcy-Brinkmann-Stokes equation, involving the processes of smectite illitization and clay swelling. Obtained reactive transport properties are utilized as input parameters for the macroscale modeling to predict the long-term behavior of bentonite buffer in EBS. As such, this study involves the whole workflow of quantifying the reaction parameters of smectite illitization through the hydrothermal reaction experiments, and numerically modeling the reactive transport process of smectite illitization in bentonite buffer of EBS from pore-scale to macroscale. The presented multiscale modeling findings are expected to provide reliable solution for safe nuclear waste disposal with EBS.

방사성폐기물 처분에서 미생물의 역할과 중요성 (Roles and Importance of Microbes in the Radioactive Waste Disposal)

  • 백민훈;이승엽;노열
    • 방사성폐기물학회지
    • /
    • 제7권1호
    • /
    • pp.63-72
    • /
    • 2009
  • 방사성폐기물 처분에서 미생물에 대한 연구는 최근에 중요한 연구 결과들이 지속적으로 발표됨에 따라 그 중요성에 대한 인식이 차츰 확대되고 있는 추세이다. 본 연구에서는 방사성폐기물 처분에서 미생물의 역할과 영향들에 대한 연구결과 및 연구동향을 조사 분석하였다. 방사성폐기물 처분시스템에서 고려되고 있는 다중방벽들인 인공방벽과 자연방벽에서의 미생물들의 역할 및 연구결과를 정리하여 제시하였다. 인공방벽에서는 처분용기의 부식에 대한 영향과 압축된 완충재에서의 미생물의 생존가능성 및 역할에 대해 논의하였다. 천연방벽에서는 지하수 및 암반에 존재하는 미생물들의 역할을 자연유사연구 결과와 함께 정리하여 제시하였다. 또한 지하매질을 통한 핵종이동 및 지연특성에서 미생물의 역할과 다양한 작용과정들 및 영향을 최근 연구동향과 함께 분석하고 정리하여 제시하였다. 따라서 향후 심부 지하 환경에서 처분시스템의 거동 및 지중매질을 통한 방사성 핵종의 이동 등에 미치는 미생물의 영향에 대한 심도 있는 연구가 본격적으로 수행된다면 미생물의 중요성 및 역할에 대한 엄격한 평가를 할 수 있을 것으로 사료된다.

  • PDF

중·저준위 방사성폐기물 천층처분시설 근계영역의 2차원 통합성능평가 모델 개발 (Development of Two-Dimensional Near-field Integrated Performance Assessment Model for Near-surface LILW Disposal)

  • 방제헌;박주완;정강일
    • 방사성폐기물학회지
    • /
    • 제12권4호
    • /
    • pp.315-334
    • /
    • 2014
  • 월성원자력환경센터 중저준위방사성폐기물 처분시설은 서로 다른 방식의 처분시설이 혼재하고, 월성 원자력발전소와도 인접해있다. 이와 같은 높은 복잡성으로 인해 처분시설 안전성 평가 시 보다 면밀한 현상이해가 필요하다. 기존 1단계 사일로 처분시설의 성능평가모델들에 포함된 불필요한 보수성을 줄이고 복합처분시설에 대한 보다 실제적인 성능을 파악하기 위해서는 다차원 수리/핵종이동 모델이 필요하다. 이와 함께 향후 복합처분시스템의 특성에 기인한 다양한 불확실성을 관리하고 파라미터의 중요도를 분석하기 위해 많은 계산이 필요할 것으로 예상하며, 이를 위해 보다 효율적인 성능평가 모델이 요구된다. 본 논문에서는 두 요건을 충족시키기 위해 수리성능 모델과 핵종이동 모델을 연계한 2단계 천층처분시설의 근계영역 2차원 통합성능평가 모델을 개발하였다. 수리 및 핵종이동은 PORFLOW와 GoldSim 전산 코드를 이용해 평가하였으며, GoldSim 핵종이동 모델은 PORFLOW 핵종이동 모델과의 벤치마크를 통해 검증하였다. GoldSim 모델은 계산효율이 뛰어났으며 기존의 모델에 비해 핵종이동거동을 이해하는데 용이하였다.

방사성 폐기물 저장을 위한 불연속 암반의 특성 및 고온하에서의 암반의 수리열역학적 상호작용에 관한 연구 (A Study on Characteristics of Jointed Rock Masses and Thermo-hydro-mechanical Behavior of Rock Mass under High Temperature)

  • 이희근;김영근;이희석
    • 터널과지하공간
    • /
    • 제8권3호
    • /
    • pp.184-193
    • /
    • 1998
  • 방사성 폐기물의 안전한 처분을 위해서는 암반의 역학적, 열적, 유체 거동 뿐 아니라 암반과 물 사이의 물리 화학적 상호작용을 이해할 필요가 있다. 또한 지질구조, 지하현지응력, 습곡, 열수작용, 마그마의 관입, 판구조 등과 같은 많은 조건을 모델링하고 예측하기 위해서는 암석의 역학적, 수리적 특성을 알아야 한다. 이 연구는 심부 암반에 폐기물 처분과 관련된 암석역학적인 사항들에 대해 연구들에 기초하고 있다. 이 논문은 변하는 온도 상태에서 암반의 역학적 수리적 거동, 암반의 열-수리-역학적 상호작용 해석과 불연속 암석의 거동 특성 등을 포함한다. 역학적 특성은 Interaken 암석역학 시험 시스템으로 측정되었으며, 수리적 특성에는 순간 증압 투수계수 측정 시스템이 사용되었다. 모든 결과에서 암석 특성은 온도 변화에 민감함을 보였다.

  • PDF

환경보전을 위한 소비자 역할과 실천적 접근방법에 관한 고찰 (Consumer Roles and Practical Methods for Environmental Preservation)

  • 손상희
    • 한국생활과학회지
    • /
    • 제6권1호
    • /
    • pp.41-53
    • /
    • 1997
  • Environmental issues are increasingly important in consumer decision-making. This paper focuses on the consumer's role in consumption process-purchase, use, and disposal, which has significant environmental consequences. And this paper discusses several approaches to motivate consumer's awareness and responsibility for the environment and further his/her lifestyle change. The Green Consumer should be able to consider the implications of his/her lifestyle choices as well as his/her purchase, use, and disposal decisions. Consumer education and various consumer movements for environment preservation should keep the goal in perspective, which is not only to motivate consumer's long-term behavior change but also to consign his/her buying power and political power to help make changes where he/she really counts.

  • PDF

호퍼준설선의 투기특성 (Disposal Characteristics of Dredged Material from the Hopper Dredger)

  • 정대득;이중우
    • 한국항만학회지
    • /
    • 제11권2호
    • /
    • pp.203-214
    • /
    • 1997
  • Hydraulic dredgers(Hopper dredger) are the most important piece of equipment in the entire harbor engineering field, and most suitable for the removal of sand and weakly consloidated sediment such as silt. In maintenance dredging, specially confined harbor or congested passage area, Hopper dredger is user most popularly because less obstruction and danger to navigation than other mostly stationary dredgers. Investigation of the physical behave of dredged material disposal in coastal water from the Hopper dredger includes estimations of pattern as well as thickness of material on the bottom. Calculation based on vertical settling and horizontal advection of single particles ignore the effects of bulk properties of the disposed marterial, vertical and horizontal diffusion. and material dilution due to the entrainment of ambient water during descent. This paper focuses on the analysis of dredging and dumping characteristics and the spatial and temporal changes in the dumping fields for the water column and bottom at a hypothetically confined coastal water. This model accounts the behavior of material after release from the hopper dredger. It is shown that the model describes the qualitative feature of prototype dumping process and its response.

  • PDF

Galvanic Corrosion Behavior of Copper Canister

  • Minsoo Lee;Junhyuk Jang;Jin Seop Kim
    • 방사성폐기물학회지
    • /
    • 제22권1호
    • /
    • pp.55-66
    • /
    • 2024
  • In this study, we investigated the suppression of the corrosion of cast iron in a copper-cast iron double-layered canister under local corrosion of the copper layer. The cold spray coating technique was used to insert metals with lower galvanic activity than that of copper, such as silver, nickel, and titanium, between the copper and cast iron layers. Electrochemically accelerated corrosion tests were performed on the galvanic specimens in KURT groundwater at a voltage of 1.0 V for a week. The results revealed that copper corrosion was evident in all galvanic specimens of Cu-Ag, Cu-Ni, and Cu-Ti. By contrast, the copper was barely corroded in the Cu-Fe specimens. Therefore, it was concluded that if an inactive galvanic metal is applied to the areas where local corrosion is concerned, such as welding parts, the disposal canister can overcome local or non-uniform corrosion of the copper canister for long periods.

APPLICATION OF COLD SPRAY COATING TECHNIQUE TO AN UNDERGROUND DISPOSAL COPPER CANISTER AND ITS CORROSION PROPERTIES

  • Lee, Min-Soo;Choi, Heui-Joo;Choi, Jong-Won;Kim, Hyung-Jun
    • Nuclear Engineering and Technology
    • /
    • 제43권6호
    • /
    • pp.557-566
    • /
    • 2011
  • A cold spray coating (CSC) of copper was studied for its application to a high-level radioactive waste (HLW) disposal canister. Several copper coatings of 10 mm thick were fabricated using two kinds of copper powders with different oxygen contents, and SS 304 and nodular cast iron were used as their base metal substrates. The fabricated CSC coppers showed a high tensile strength but were brittle in comparison with conventional non-coating copper, hereinafter defined to as "commercial copper". The corrosion behavior of CSC coppers was evaluated by comparison with commercial coppers, such as extruded and forged coppers. The polarization test results showed that the corrosion potential of the CSC coppers was closely related to its purity; low-purity (i.e., high oxygen content) copper exhibited a lower corrosion potential, and high-purity copper exhibited a relatively high corrosion potential. The corrosion rate converted from the measured corrosion current was not, however, dependent on its purity: CSC copper showed a little higher rate than that of commercial copper. Immersion tests in aqueous HCl solution showed that CSC coppers were more susceptible to corrosion, i.e., they had a higher corrosion rate. However, the difference was not significant between commercial copper and high-purity CSC copper. The decrease of corrosion was observed in a humid air test presumably due to the formation of a protective passive film. In conclusion, the results of this study indicate that CSC application of copper could be a useful option for fabricating a copper HLW disposal canister.