DOI QR코드

DOI QR Code

Corrosion Behavior of Cu-Ni Alloy Film Fabricated by Wire-fed Additive Manufacturing in Oxic Groundwater

  • Received : 2024.03.05
  • Accepted : 2024.04.15
  • Published : 2024.06.30

Abstract

The growing significance of sustainable energy technologies underscores the need for safe and efficient management of spent nuclear fuels (SNFs), particularly via deep geological disposal (DGD). DGD involves the long-term isolation of SNFs from the biosphere to ensure public safety and environmental protection, necessitating materials with high corrosion resistance for DGD canisters. This study investigated the feasibility of a Cu-Ni film, fabricated via additive manufacturing (AM), as a corrosion-resistant layer for DGD canister applications. A wire-fed AM technique was used to deposit a millimeter-scale Cu-Ni film onto a carbon steel (CS) substrate. Electrochemical analyses were conducted using aerated groundwater from the KAERI underground research tunnel (KURT) as an electrolyte with an NaCl additive to characterize the oxic corrosion behavior of the Cu-Ni film. The results demonstrated that the AM-fabricated Cu-Ni film exhibited enhanced corrosion resistance (manifested as lower corrosion current density and formation of a dense passive layer) in an NaCl-supplemented groundwater solution. Extensive investigations are necessary to elucidate microstructural performance, mechanical properties, and corrosion resistance in the presence of various corroding agents to simplify the implementation of this technology for DGD canisters.

Keywords

Acknowledgement

This work was supported by the Institute for Korea Spent Nuclear Fuel (iKSNF) and National Research Foundation of Korea (NRF) grants funded by the Korean Government (Ministry of Science and ICT, MSIT) (2021M2E3A2041351).

References

  1. Posiva Oy. Safety Case for the Disposal of Spent Nuclear Fuel at Olkiluoto - Performance Assessment 2012, Posiva Technical Report, POSIVA 2012-04 (2012). 
  2. S. Yoon, M.J. Kim, S. Park, and G.Y. Kim, "Thermal Conductivity Prediction Model for Compacted Bentonites Considering Temperature Variations", Nucl. Eng. Technol., 53(10), 3359-3366 (2021).  https://doi.org/10.1016/j.net.2021.05.001
  3. P.V. Brady, B.W. Arnold, G.A. Freeze, P.N. Swift, S.J. Bauer, J.L. Kanney, R.P. Rechard, and J.S. Stein. Deep Borehole Disposal of High-Level Radioactive Waste, Sandia National Laboratories Report, SAND2009-4401 (2009). 
  4. D.G. Bennett and R. Gens, "Overview of European Concepts for High-Level Waste and Spent Fuel Disposal With Special Reference Waste Container Corrosion", J. Nucl. Mater., 379(1-3), 1-8 (2008).  https://doi.org/10.1016/j.jnucmat.2008.06.001
  5. M. Buser, A.E. Lambert, and W. Wildi, "Deep Geological Radioactive and Chemical Waste Disposal: Where We Stand and Where We Go", ATW-Int. J. Nucl. Power, 65(6/7), 311-316 (2020). 
  6. S. Yoon, G.J. Lee, and G.H. Go, "Linear Thermal Expansion Behavior of Compacted Bentonite Buffer Materials", Case Stud. Therm. Eng., 32, 101889 (2022). 
  7. F. King, C. Lilja, and M. Vahanen, "Progress in the Understanding of the Long-Term Corrosion Behaviour of Copper Canisters", J. Nucl. Mater., 438(1-3), 228-237 (2013).  https://doi.org/10.1016/j.jnucmat.2013.02.080
  8. F. King and C. Lilja. Localised Corrosion of Copper Canisters in Bentonite Pore Water, Svensk Karnbranslehantering AB Technical Report, SKB TR-13-27 (2013). 
  9. K.M. Ismail, A.M. Fathi, and W.A. Badawy, "The Influence of Ni Content on the Stability of Copper-Nickel Alloys in Alkaline Sulphate Solutions", J. Appl. Electrochem., 34(8), 823-831 (2004).  https://doi.org/10.1023/B:JACH.0000035612.66363.a3
  10. R. Zhang, Z. Zhu, X. Leng, J. Pan, and Y. Zhang, "Corrosion Characteristic of Cu-10Ni-Fex in 3.5% NaCl", Int. J. Electrochem. Sci., 13(12), 11526-11538 (2018).  https://doi.org/10.20964/2018.12.11
  11. B. Tomar, S. Shiva, and T. Nath, "A Review on Wire Arc Additive Manufacturing: Processing Parameters, Defects, Quality Improvement and Recent Advances", Mater. Today Commun., 31, 103739 (2022). 
  12. Y. Kok, X.P. Tan, P. Wang, M.L.S. Nai, N.H. Loh, E. Liu, and S.B. Tor, "Anisotropy and Heterogeneity of Microstructure and Mechanical Properties in Metal Additive Manufacturing: A Critical Review", Mater. Des., 139, 565-586 (2018).  https://doi.org/10.1016/j.matdes.2017.11.021
  13. G.Y. Kim, J. Jang, M. Lee, M. Kong, and S. Yoon, "Corrosion Behaviors of SS316L, Ti-Gr.2, Alloy 22 and Cu in KURT Groundwater Solutions for Geological Deep Disposal", Nucl. Eng. Technol., 54(12), 4474-4480 (2022).  https://doi.org/10.1016/j.net.2022.07.024
  14. A.M. Fenelon and C.B. Breslin, "The Electrochemical Synthesis of Polypyrrole at a Copper Electrode: Corrosion Protection Properties", Electrochim. Acta, 47(28), 4467-4476 (2002).  https://doi.org/10.1016/S0013-4686(02)00518-2
  15. T. Xia, L. Zeng, X. Zhang, J. Liu, W. Zhang, T. Liang, and B. Yang, "Enhanced Corrosion Resistance of a Cu-10Ni Alloy in a 3.5wt% NaCl Solution by Means of Ultrasonic Surface Rolling Treatment", Surf. Coat. Technol., 363, 390-399 (2019).  https://doi.org/10.1016/j.surfcoat.2019.02.039
  16. J.B. Jorcin, M.E. Orazem, N. Pebere, and B. Tribollet, "CPE Analysis by Local Electrochemical Impedance Spectroscopy", Electrochim. Acta, 51(8-9), 1473-1479 (2006).  https://doi.org/10.1016/j.electacta.2005.02.128
  17. J.R. MacDonald and W.R. Kenan, Impedance Spectroscopy: Emphasizing Solid Materials and Systems, 1st ed., John Wiley & Sons, New York (1987). 
  18. W.A. Badawy, K.M. Ismail, and A.M. Fathi, "Effect of Ni Content on the Corrosion Behavior of Cu-Ni Alloys in Neutral Chloride Solutions", Electrochim. Acta, 50(18), 3603-3608 (2005).  https://doi.org/10.1016/j.electacta.2004.12.030
  19. F. Rosalbino, G. Scavino, and D. Maccio, "Corrosion Behaviour of Cu-2Ti and Cu-2Zr (wt%) Alloys in Neutral Aerated Sodium Chloride Solution", Mater. Corros., 72(6), 1105-1112 (2021). https://doi.org/10.1002/maco.202012188