• Title/Summary/Keyword: disposal behavior

Search Result 227, Processing Time 0.026 seconds

Coupled Nonlinear Finite Element-Boundary Element Analysis of Nuclear Waste Storage Structures Considering Infinite Boundaries (비선형 유한요소-경계요소 조합에 의한 핵폐기구조체의 무한영역해석)

  • 김문겸;허택녕
    • Computational Structural Engineering
    • /
    • v.6 no.4
    • /
    • pp.89-98
    • /
    • 1993
  • As the construction of nuclear power plants are increased, nuclear wastes disposal has been faced as a serious problem. If nuclear wastes are to be buried in the underground stratum, thermo-mechanical behavior of stratum must be analyzed, because high temperature distribution has a significant effect on tunnel and surrounding stratum. In this study, in order to analyze the structural behavior of the underground which is subject to concentrated heat sources, a coupling method of nonlinear finite elements and linear boundary elements is proposed. The nonlinear finite elements (NFE) are applied in the vicinity of nuclear depository where thermo-mechanical stress is concentrated. The boundary elements are also used in infinite domain where linear behavior is expected. Using the similar method as for the problem in mechanical field, the coupled nonlinear finite element-boundary element (NFEBE) is developed. It is found that NFEBE method is more efficient than NFE which considers nonlinearity in the whole domain for the nuclear wastes depository that is expected to exhibit local nonlinearity behavior. The effect of coefficients of the rock mass such as Poisson's ratio, elastic modulus, thermal diffusivity and thermal expansion coefficient is investigated through the developed method. As a result, it is revealed that the displacements around tunnel are largely dependent on the thermal expansion coefficients.

  • PDF

Hydrothermal Behaviors and Long-term Stability of Bentonitic Buffer Material (벤토나이트 완충재의 열수거동 및 장기건전성 연구)

  • Lee, Jae-Owan;Cho, Won-Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.2
    • /
    • pp.145-154
    • /
    • 2007
  • In hydrothermal reaction tests, smectite-to-illite conversion was identified using a domestic bentonite which is favorably considered as a buffer material, and its dependency on various hydrothermal conditions was investigated. The analysis results of the XRD and Si concentration indicated that the smectite-to-illite conversion was a major process of bentonite alteration under the hydrothermal conditions. The temperature, potassium concentration in solution, and pH were observed to significantly affect the smectite-to illite conversion. A model of conversion reaction rate was suggested to evaluate the long-term stability of smectite composing a major constituent of bentonitic buffer. It was expected from the evaluation results that the smectite would keep its integrity for very long disposal time under a normal condition, whitens it might be converted to illite by 50 percent after over $5{\times}10^4$ year of disposal time under a conservative condition and consequently lose its swelling capacity as a buffer material of a repository.

  • PDF

Removal Characteristics of Dissolved Uranium by Shewanella p. and Application to Radioactive Waste Disposal (스와넬라균(Shewanella p.)에 의한 용존우라늄 제거 특성 및 방사성폐기물 처분에의 응용)

  • Lee, Seung-Yeop;Baik, Min-Hoon;Song, Jun-Kyu
    • Economic and Environmental Geology
    • /
    • v.42 no.5
    • /
    • pp.471-477
    • /
    • 2009
  • An experimental removal of dissolved uranium (U) exsiting as uranyl ion (${UO_2}^{2+}$) was carried out using Shewanella p., iron-reducing bacterium. By the microbial reductive reaction, initial U concentration ($50{\mu}M$) was constantly decreased, and most U were removed from solution after 2 weeks. Major mechanism that U was removed from the solution was adsorption, precipitation and mineralization on the microbe surface. Under the transmission electron microscopy, the U adsorbed on the microbe was observed as being crystallized and eventually enlarged to several ${\mu}m$ sizes of minerals by combining with individual microbes and organic exudates. It seems that such U growth and mineralization on the microbial surface could affect the U behavior in a radioactive waste disposal site. Thus, the biogechemical reaction of metal-reducing bacteria observed in this experiment could give an affirmative measure that the microbial activity may retard U movement in subsurface environment.

Numerical Simulation of Triaxial Compression Test Using the GREAT Cell: Hydro-Mechanical Experiment (GREAT 셀을 이용한 삼축압축시험의 수치모사: 수리역학 실험)

  • Dohyun Park;Chan-Hee Park
    • Tunnel and Underground Space
    • /
    • v.33 no.2
    • /
    • pp.83-94
    • /
    • 2023
  • Unlike the conventional triaxial test cells for cylindrical specimens, which impose uniform lateral confining pressures, the GREAT (Geo-Reservoir Experimental Analogue Technology) cell can exert differential radial stresses using eight independently-controlled pairs of lateral loading elements and thereby generate horizontal stress fields with various magnitudes and orientations. In the preceding companion paper, GREAT cell tests were numerically simulated under different mechanical loading conditions and the validity of the numerical model was investigated by comparing experimental and numerical results for circumferential strain. In the present study, we simulated GREAT cell tests for an artificial sample containing a fracture under both mechanical loading and fluid flow conditions. The numerical simulation was carried out by varying the mechanical properties of the fracture surface, which were unknown. The numerical responses (circumferential strains) of the sample were compared with experimental data and a good match was found between the numerical and experimental results under certain mechanical conditions of the fracture surface. Additionally, the effect of fluid flow conditions on the mechanical behavior of the sample was investigated and discussed.

The Impulsive Analysis of the Cavern in Saturated Rock Mass (포화된 암반체에 위치한 공동의 발파충격해석)

  • 김대홍;이경진;황신일;김진웅
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.10a
    • /
    • pp.201-208
    • /
    • 1994
  • To secure long-term structural safety of underground openings for radioactive waste disposal, the proper structural safety analyses are required. Especially, the structural analysis for underground openings should consider the effects of groundwater pressure. The objective of this study is to develop the structural analysis method for saturated rock masses. In this study, the interaction between groundwater distribution and structural behavior of rock masses are carried out to develop the structural analysis method of saturated rock masses. Then, a 3-Dimensional Multi-Phase Dynamic Analysis Program (MPDAP-3D) has been developed by modifying the existing MPDAP which is based on the concept of 2-dimensional two-phase media.

  • PDF

A Mathematical Model Development for Microbial Arsenic Transformation and Transport

  • Lim, Mi-Sun;Yeo, In-Wook;Lee, Kang-Kun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.318-322
    • /
    • 2004
  • Arsenic is a toxic and carcinogenic metalloid, whose sources in nature include mineral dissolution and volcanic eruption. Abandoned mines and hazardous waste disposal sites are another major source of arsenic contamination of soil and aquatic systems. To predict concentrations of the toxic inorganic arsenic in aqueous phase. the biogeochemical redox processes and transport behavior need to be studied together and be coupled in a reactive transport model. A new reaction module describing the fate and transport of inorganic arsenic species (As(II)), dissolved oxygen, nitrate, ferrous iron, sulfate, and dissolved organic carbon are developed and incorporated into the RT3D code.

  • PDF

Measurement of thermal properties by TPS-technique and thermal network analysis (TPS를 통한 열물성치 획득 및 네트워크모델을 이용한 열해석)

  • Yun, Tae-Sup;Kim, Young-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.263-268
    • /
    • 2010
  • Thermal characterization of geomaterials has significant implication on the geothermal energy, disposal of nuclear wastes, geological sequestration of carbon dioxides and recovery of hydrocarbon resources. Heat transfer in multiphase materials is dominated by the thermal conductivity of consisting components, porosity, degree of saturation and overburden pressure, which have been investigated by the empirical correlation at macro-scale. The thermal measurement by Transient Plane Source (TPS) and associated algorithm for interpretation of thermal behavior in geomaterials corroborate the robustness of sensing techniques. The method simultaneously provides thermal conductivity, diffusivity and volumetric heat capacity. The newly introduced thermal network model enables estimating thermal conductivity of geomaterials subjected to the effective stress, which has not been evaluated using previous thermal models. The proposed methods shows the applicability of reliability of TPS technique and thermal network model.

  • PDF

Dynamic analysis of electromechanical system (기전 시스템의 동역학 해석)

  • 김진식;박정훈;임홍재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1113-1118
    • /
    • 2004
  • This paper presents the dynamic analysis method for an electromechanical system. The engineer has at his disposal a variety of software simulation tools. However, difficulties arise when the study of the behavior of complex electromechanical systems in combination with coupling element is required. Typical examples of such systems are machines for factory automation, home automation, and office automation. Dynamic systems analysis packages or electronic systems analysis packages offer the restrictive to simulate these mixed systems such electromechanical product. Electronic circuit analysis algorithm is easily incorporated into a multi-body dynamics analysis algorithm. The governing equation of electronic circuit is formulated as a differential algebraic equation form including both electrical and mechanical variables and is simultaneously solved in every time step. This analysis method clearly demonstrates the application potential for mixed electromechanical simulation.

  • PDF

Feasibility of Composting Combinations of Sewage Sludge, Cattle Manure, and Sawdust in a Rotary Drum Reactor

  • Nayak, Ashish Kumar;Kalamdhad, Ajay S.
    • Environmental Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.47-57
    • /
    • 2014
  • The aim of this paper was to study the effect of five different waste combinations (C/N 15, C/N 20, C/N 25, C/N 30, and control) of sewage sludge coupled with sawdust and cattle manure in a pilot scale rotary drum reactor, during 20 days of the composting process. Our results showed that C/N 30 possesses a higher temperature regime with higher % reduction in moisture content, total organic carbon, soluble biochemical oxygen demand and chemical oxygen demand; and higher % gain in total nitrogen and phosphorus at the end of the composting period implying the total amount of biodegradable organic material is stabilized. In addition, $CO_2$ evolution and oxygen uptake rate decreased during the process, reflecting the stable behavior of the final compost. A Solvita maturity index of 8 indicated that the compost was stable and ready for usage as a soil conditioner. The results indicated that composting can be an alternate technology for the management of sewage sludge disposal.

The Comparison of the Environment Consciousness and the Disposal Behavior Between the Urban Children and the Rural Children (아동의 환경의식과 처분행동에 관한연구 -도시와 농촌간의 비교연구-)

  • 강이주
    • Journal of Families and Better Life
    • /
    • v.13 no.2
    • /
    • pp.35-44
    • /
    • 1995
  • 본연구의 목적은 아동의 환경의식과 처분행동을 조사하여 환경문제에 대한 아동의 역할을 조명하고 조기환경교육의 기초자료를 제공하는데 있다 조사도구는 질문지를 이용하 였고 분석방법은 SAS통계프로그램을 이용하였다 환경의시과 처분행동의 차이는 ANOVA와 Tukey test를 지역간(도시, 농촌)의 차이는 t-test 와 $\chi$2 검정을 사용하였다 분석에 이용된 자료는 도시 311부 농촌 299부로 총 610부였다 본연구의 결과를 요약하면 다음과 같다 1) 도시와 농촌간의 환경의식은 통계적으로 유의한 차이가 없이 모두 높게 나타났다 2) 인구통 계변수에 따른 환경의식은 생활수준과어머니의 교육수준이 높을수록 높았으며 주거형태별로 는 아파트 거주자가 높게 나타났다 3) 도시와 농촌간의 처분행동은 유의적인 차이를 보였는 데 도시 지역이 높게 나타났다 4) 인구통계변수에 따른 처분행동은 환경의식과 마찬가지로 소득과 어머니의 교육수준이 높을수록 높았으며 아파트 거주자와 종교가 있느 아동이 높게 나타났다 이러한 결과는 환경을 고려하는 행동양식의선행변수가 교육임을 재확인해주었다

  • PDF