• Title/Summary/Keyword: displacement of structure

Search Result 2,258, Processing Time 0.027 seconds

The Study on Seismic Analysis Methods for Underground Structures (지중구조물의 내진해석방법에 관한 연구)

  • Jeong, Gwang-Mo;Bang, Myeong-Seok
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2011.11a
    • /
    • pp.75-84
    • /
    • 2011
  • In this paper various numerical analyses are carried out according to behavior characteristics of structures and types of seismic design methods as a study on the seismic analysis for underground structures. Equivalent Static Force Procedure and Response Displacement Method commonly used in practiral design are adopted and Time History Method regarded as the most accurate analysis method is selected to verify the results of two practical methods above. 3-D modelling for seismic analysis of structures is introduced to consider Structure Soil Interaction and all analyses are based on Korea Structural Concrete Design Code. After numerical analyses, Equivalent Static Force Procedure and Response Displacement Method showed relatively lager values than those of Time History Method, so it is identified that above two methods are suitable for practical design purpose.

  • PDF

Seismic Response of MDOF Structure with Shallow Foundation Using Winkler Model (Winkler Model을 적용한 얕은 기초 다자유도 구조물의 지진응답)

  • Kim, Dong Kwan;Kim, Ho Soo;Min, Ji Hee;Park, Jin Young
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.165-170
    • /
    • 2024
  • This study investigated the impact of soil-structure interaction on multi-degree-of-freedom structures using the shallow-foundation Winkler model, known as the BNWF model. The model's period was determined through eigenvalue analysis and compared to results obtained from FEMA's formula. Results indicated that considering the soil, the structure's period increased by up to 8.7% compared to the fixed-base model, aligning with FEMA's calculations. Furthermore, with adequate ground acceleration, roof displacement increased by 3.4% to 3.8%, while base shear decreased by 4% to 10%. However, roof displacement and base shear increased in some earthquake scenarios due to spectral shape effects in regions with extended structural periods. Foundation damping effects, determined through the foundation's moment-rotation history, grew with higher ground acceleration. This suggests that accounting for period elongation and foundation damping can enhance the seismic design of multi-degree-of-freedom structures.

Simulation on Loading Strength of Rainwater Storage Tank Unit (우수저류조 유닛의 하중강도에 대한 모의실험 분석)

  • Lee, Sang-Woo;Nam, Dong-Kun;Choi, Jong-Moon
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.4
    • /
    • pp.107-113
    • /
    • 2013
  • The design of rainwater storage system unit to manufacture its reservoir tank was tried, the simulation to predict of their structural strength was carried out. Rainwater storage system unit should be easy to their machinability, transport and assemble. Especially, their structure was able to secure the water storage space, withstand loads and easily response to pollution. Considering these various requirements, they have to Doria-pillar structure of the Roman architectural style because these designs could disperse the loads which are applied to them. Therefore, the six kinds of models possible were proposed. Several boundary conditions were given to each model. Their structural strength was predicted through the simulation on their stress and the displacement distribution to constant load. From the evaluated data, the structure which has a large pillar in the central of unit and four small pillars each corner was the best.

Performance of sandwich structure strengthened by pyramid cover under blast effect

  • Mazek, Sherif A.
    • Structural Engineering and Mechanics
    • /
    • v.50 no.4
    • /
    • pp.471-486
    • /
    • 2014
  • The number of explosive attacks on civilian structures has recently increased. Protection of structure subjected to blast load remains quite sophisticated to predict. The use of the pyramid cover system (PCS) to strengthen sandwich structures against a blast terror has great interests from engineering experts in structural retrofitting. The sandwich steel structure performance under the impact of blast wave effect is highlighted. A 3-D numerical model is proposed to study the PCS layer to strengthen sandwich steel structures using finite element analysis (FEA). Hexagonal core sandwich (XCS) steel panels are used to study structural retrofitting using the PCS layer. Field blast test is conducted. The study presents a comparison between the results obtained by both the field blast test and the FEA to validate the accuracy of the 3-D finite element model. The effects are expressed in terms of displacement-time history of the sandwich steel panels and pressure-time history effect on the sandwich steel panels as the explosive wave propagates. The results obtained by the field blast test have a good agreement with those obtained by the numerical model. The PCS layer improves the sandwich steel panel performance under impact of detonating different TNT explosive charges.

FxLMS Algorithm for Active Vibration Control of Structure By Using Inertial Damper with Displacement Constraint (관성형 능동 댐퍼를 이용한 구조물 진동 제어에서 댐퍼 질량의 변위 제한을 고려한 FxLMS 알고리즘)

  • Kang, Min Sig
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.545-557
    • /
    • 2021
  • Engine is the main source of vibration that generates unwanted noise and vibration of vehicle chassis. Especially, in submarine applications, radiation of noise signatures can be detected at some distance away from the submarine using a sonar array. Thus quiet operation is crucial for submarine's survivability. This study addresses reduction of the force transmissibility originating from engines and transmitted to hull through engine mounts. An inertial damper, as an actuator of hybrid mount system, is addressed to reduce even further the level of vibration. Narrow band FxLMS algorithms are broadly used to cancel the vibration of engine mount because of its excellent performance of canceling narrow band noise. However, in real active dampers, the maximum displacement of damper mass is kinematically restricted. When the control input signal from the FxLMS algorithm exceeds this limitation, the damper mass will collide with the mechanical stops and results in many problems. Originated from these, a modified narrow band FxLMS algorithm based on the equalizer technique with the maximum allowable displacement of active damper mass is proposed in this study. Some simulation results showed that the propose algorithm is effective to suppress vibration of engine mount while ensuring given displacement constraint.

Sensor and actuator design for displacement control of continuous systems

  • Krommer, Michael;Irschik, Hans
    • Smart Structures and Systems
    • /
    • v.3 no.2
    • /
    • pp.147-172
    • /
    • 2007
  • The present paper is concerned with the design of distributed sensors and actuators. Strain type sensors and actuators are considered with their intensity continuously distributed throughout a continuous structure. The sensors measure a weighted average of the strain tensor. As a starting point for their design we introduce the concept of collocated sensors and actuators as well as the so-called natural output. Then we utilize the principle of virtual work for an auxiliary quasi-static problem to assign a mechanical interpretation to the natural output of the sensors to be designed. Therefore, we take the virtual displacements in the principle of virtual work as that part of the displacement in the original problem, which characterizes the deviation from a desired one. We introduce different kinds of distributed sensors, each of them with a mechanical interpretation other than a weighted average of the strain tensor. Additionally, we assign a mechanical interpretation to the collocated actuators as well; for that purpose we use an extended body force analogy. The sensors and actuators are applied to solve the displacement tracking problem for continuous structures; i.e., the problem of enforcing a desired displacement field. We discuss feed forward and feed back control. In the case of feed back control we show that a PD controller can stabilize the continuous system. Finally, a numerical example is presented. A desired deflection of a clamped-clamped beam is tracked by means of feed forward control, feed back control and a combination of the two.

Damage detection using both energy and displacement damage index on the ASCE benchmark problem

  • Khosraviani, Mohammad Javad;Bahar, Omid;Ghasemi, Seyed Hooman
    • Structural Engineering and Mechanics
    • /
    • v.77 no.2
    • /
    • pp.151-165
    • /
    • 2021
  • This paper aims to present a novelty damage detection method to identify damage locations by the simultaneous use of both the energy and displacement damage indices. Using this novelty method, the damaged location and even the damaged floor are accurately detected. As a first method, a combination of the instantaneous frequency energy index (EDI) and the structural acceleration responses are used. To evaluate the first method and also present a rapid assessment method, the Displacement Damage Index (DDI), which consists of the error reliability (β) and Normal Probability Density Function (NPDF) indices, are introduced. The innovation of this method is the simultaneous use of displacement-acceleration responses during one process, which is more effective in the rapid evaluation of damage patterns with velocity vectors. In order to evaluate the effectiveness of the proposed method, various damage scenarios of the ASCE benchmark problem, and the effects of measurement noise were studied numerically. Extensive analyses show that the rapid proposed method is capable of accurately detecting the location of sparse damages through the building. Finally, the proposed method was validated by experimental studies of a six-story steel building structure with single and multiple damage cases.

Estimation of Displacements Using the Transformed Response in Time and Frequency Domain

  • Jung, Beom-Seok
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.6 no.1
    • /
    • pp.44-50
    • /
    • 2003
  • If the accelerometers are used in measuring the response, the absolute values of the velocity and displacement are not usually obtainable because their initial values are not accounted for in the integration of the acceleration response. A new dynamic response conversion algorithm of both the time domain and the frequency domain is proposed for the problem in estimating the displacement data by defining the transformed responses. In this algorithm, the displacement response can be obtained from the measured acceleration records by integration without requiring the knowledge of the initial velocity and displacement information. The applicability of the technique is tested by an example problem using the real bridge's superstructure under several cases of moving load. In the response conversion procedure of the frequency domain, the identified response according to the frequency can be estimated by changing over the limits of integration. If the reliability of the identified responses is ensured, it is expected that the proposed method for estimating the impact factor can be useful in the bridge's dynamic test. This method can be useful in those practical cases when the direct measurement of the displacement is difficult as in the dynamic studies of huge structure.

  • PDF

Displacement Response Analysis of Twisted Irregular Buildings According to TMD (TMD 적용에 따른 Twisted 비정형 건축물의 변위 응답 분석)

  • Yoo, Sang-Ho;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.1
    • /
    • pp.89-98
    • /
    • 2024
  • In this study, we investigated the dynamic characteristics of three irregular building models to analyze the effectiveness of displacement response control with Tuned Mass Damper (TMD) installation in twisted irregular buildings. The three irregular models were developed with a fixed angle of twist per story at one degree, subjected to three historical seismic loads and resonant harmonic loads. By designing TMDs with linear and dashpot attributes, we varied the total mass ratio of the installed TMDs from 0.00625% to 1.0%, encompassing a total of 10 values. Two TMDs were installed at the center of the top story of the analysis model in both X and Y directions to evaluate displacement response control performance based on TMD installation. Our findings suggest that the top displacement response control performance was most effective when a 1.0% TMD was installed at the top layer of the analysis model.

A study on determination of target displacement of RC frames using PSV spectrum and energy-balance concept

  • Ucar, Taner;Merter, Onur;Duzgun, Mustafa
    • Structural Engineering and Mechanics
    • /
    • v.41 no.6
    • /
    • pp.759-773
    • /
    • 2012
  • The objective of this paper is to present an energy-based method for calculating target displacement of RC structures. The method, which uses the Newmark-Hall pseudo-velocity spectrum, is called the "Pseudo-velocity Spectrum (PSVS) Method". The method is based on the energy balance concept that uses the equality of energy demand and energy capacity of the structure. First, nonlinear static analyses are performed for five, eight and ten-story RC frame structures and pushover curves are obtained. Then the pushover curves are converted to energy capacity diagrams. Seven strong ground motions that were recorded at different soil sites in Turkey are used to obtain the pseudo-acceleration and the pseudo-velocity response spectra. Later, the response spectra are idealised with the Newmark-Hall approximation. Afterwards, energy demands for the RC structures are calculated using the idealised pseudo-velocity spectrum. The displacements, obtained from the energy capacity diagrams that fit to the energy demand values of the RC structures, are accepted as the energy-based performance point of the structures. Consequently, the target displacement values determined from the PSVS Method are checked using the displacement-based successive approach in the Turkish Seismic Design Code. The results show that the target displacements of RC frame structures obtained from the PSVS Method are very close to the values calculated by the approach given in the Turkish Seismic Design Code.