• 제목/요약/키워드: displacement frequency

검색결과 1,301건 처리시간 0.027초

연료전지용 터보압축기 회전축의 동특성 해석에 관한 연구 (A Study on the Dynamic Analysis in the Shaft of Turbo-Blower for Fuel Cell)

  • 김홍건;나석찬;김성철;강영우;양균의;이희관;최문창
    • 한국공작기계학회논문집
    • /
    • 제13권1호
    • /
    • pp.81-87
    • /
    • 2004
  • A 3-D FEM (Finite Element Method) analysis of the turbo-blower shaft attached to a fuel cell was performed using Lanczos algorithm. The modal analysis was analyzed in order to investigate natural frequency and maximum displacement for 10 times. It was found that the first mode of natural frequency is 109.1Hz with the maximum displacement of 0.16mm while the tenth mode of natural frequency is 2464Hz with the maximum displacement of 0.25mm. Consequently, the results of modal analysis of the turbo-blower for a fuel cell system show good dynamic responses.

Wind-induced responses of supertall buildings considering soil-structure interaction

  • Huang, Yajun;Gu, Ming
    • Wind and Structures
    • /
    • 제27권4호
    • /
    • pp.223-234
    • /
    • 2018
  • In this study, a simplified three-dimensional calculation model is developed for the dynamic analysis of soil-pile group-supertall building systems excited by wind loads using the substructure method. Wind loads acting on a 300-m building in different wind directions and terrain conditions are obtained from synchronous pressure measurements conducted in a wind tunnel. The effects of soil-structure interaction (SSI) on the first natural frequency, wind-induced static displacement, root mean square (RMS) of displacement, and RMS of acceleration at the top of supertall buildings are analyzed. The findings demonstrate that with decreasing soil shear wave velocity, the first natural frequency decreases and the static displacement, RMS of displacement and RMS of acceleration increase. In addition, as soil material damping decreases, the RMS of displacement and the RMS of acceleration increase.

변위증폭기를 이용한 마이크로 매니플레이터의 공리적 설계 (Axiomatic Design of a Micromanipulator using Displacement Amplifier)

  • 한석영;윤상준;황준성;김민수;박재용;이병주;김선정
    • 대한기계학회논문집A
    • /
    • 제31권1호
    • /
    • pp.62-69
    • /
    • 2007
  • Micromanipulator is a device that manipulates an object with high precision. Generally, a parallel-type robot has inherently higher precision than a serial-type robot. In most cases, the use of flexure hinge mechanisms is the most appropriate approach to micromanipulators. The micromanipulator is basically required that have high natural frequency and sufficient workspace. However, previous designs are hard to satisfy the required workspace and natural frequency, simultaneously, because the previous micromanipulators are coupled designs. Therefore, this paper suggests a new design parameter as displacement amplifier and new design procedure based on semi-coupled design in axiomatic design. As a consequence the spatial 3-DOF micromanipulator which is chosen as an exemplary device has natural frequency of 500Hz and workspace of $-0.5^{\circ}{\sim}0.5^{\circ}$. To investigate the effectiveness of the displacement amplifier, simulation and experiment are performed.

변화하는 감쇠를 갖는 계가 조화력을 받을 때의 운동 - 이론적 해석 (Motion of a System with Varying Damping Subject to Harmonic Force - Analytical Analysis)

  • 박오철;이건명
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.898-902
    • /
    • 2006
  • The motion of a system composed of a plate, constant springs and varying dampers is considered when the system is subject to harmonic force. Letting the frequencies of harmonic force and damper variation ${\Large f}_1\;and\;{\Large f}_2$ respectively, the displacement at the center of the plate has the strongest component at frequency ${\Large f}_1$. The angular displacement of the plate has strong components at ${\Large f}_1-{\Large f}_2$ and the natural frequency of the rotational mode of the system. If these two frequencies coincide, the plate oscillates with almost single frequency and a large amplitude. Part of these simulation results are proved analytically.

  • PDF

변화하는 강성/감쇠를 갖는 계가 조화력을 받을 때의 운동 (Motion of a System with Varying Stiffness/Damping Subject to Harmonic Force)

  • 이건명;박오철
    • 한국소음진동공학회논문집
    • /
    • 제16권9호
    • /
    • pp.958-963
    • /
    • 2006
  • The motion of a system composed of a plate, constant springs and varying dampers is considered when the system is subject to harmonic force. Letting the frequencies of harmonic force and damper variation $f_1\;and\;f_2$, respectively, the displacement at the center of the plate has the strongest component at frequency $f_1$. The angular displacement of the plate has strong components at $f_1-f_2$ and the natural frequency of the rotational mode of the system. If these two frequencies coincide, the plate oscillates with almost single frequency and a large amplitude. These results can be applied to development of a moment shaker with low frequencies.

변화하는 강성/감쇠를 갖는 계가 조화력을 받을 때의 운동 (Motion of a System with Varying Stiffness/Damping Subject to Harmonic Force)

  • 이건명;박오철
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.81-85
    • /
    • 2006
  • The motion of a system composed of a plate, constant springs and varying dampers is considered when the system is subject to harmonic force. Letting the frequencies of harmonic force and damper variation ${\Large f}_1\;and\;{\Large f}_2$, respectively, the displacement at the center of the plate has the strongest component at frequency ${\Large f}_1$. The angular displacement of the plate has strong components at ${\Large f}_1-{\Large f}_2$, and the natural frequency of the rotational mode of the system. If these two frequencies coincide, the plate oscillates with almost single frequency and a large amplitude. These results can be applied to development of a moment shatter with low frequencies.

  • PDF

2차원 공구진동기구의 변위 해석 (A Displacement Analysis of 2-Dimensional Tool Vibrator)

  • 손성민;임한석;안중환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.898-901
    • /
    • 2000
  • In this paper, the theoretical tool displacement and surface roughness are analyzed based on the tool locus of a 2-dimensional tool vibrator. At first, the effects assuming no structural deformation of such variables as frequency, amplitude and phase difference that determine tool loci are simulated. The results show that larger amplitude and/or higher frequency makes better surface. However, a real tool vibrator has the structural deformation, much or less, depending on the excitation frequency. Applying FEM analysis to the deformation of a designed 2D tool vibrator according to the excitation, it has been proved that in this case the displacement is 5${\mu}{\textrm}{m}$ at 1KHz and almost 0 at 20KHz even under the same excitation amplitude.

  • PDF

다중 층간분리부가 내재된 복합재 평판의 유한요소 진동해석 (Dynamic analysis for delaminated composites based on finite element)

  • 오진호;조맹효;김준식
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 춘계학술발표대회 논문집
    • /
    • pp.143-146
    • /
    • 2003
  • A finite element based on the efficient higher order zig-zag theory with multiple delaminations Is developed to refine the predictions of frequency and mode shapes. Displacement field through the thickness are constructed by superimposing linear zig-zag field to the smooth globally cubic varying field. The layer-dependent degrees of freedom of displacement fields are expressed in terms of reference primary degrees of freedom by applying interface continuity conditions including delaminated interfaces as well as free hounding surface conditions of transverse shear stresses. Thus the proposed theory is not only accurate but also efficient. This displacement field can systematically handle the number, shape, size, and locations of delaminations. Throught the dynamic version of variational approach, the dynamic equilibrium equations and variationally consistent boundary conditions are obtained. Through the natural frequency analysis and time response analysis of composite plate with multiple delaminations, the accuracy and efficiency of the present finite element are demonstrated. The present finite element is suitable in the predictions of the dynamic response of the thick composite plate with multiple delaminations.

  • PDF

조화력에 의한 원환의 강제진동 (Forced Vibration of a Circular Ring with Harmonic Force)

  • 홍진선
    • 한국소음진동공학회논문집
    • /
    • 제15권2호
    • /
    • pp.123-128
    • /
    • 2005
  • Forced vibration of a thin circular ring with a concentrated harmonic force is analyzed when the ring is free and has only the in-plane motion. Using the unit doublet function for external force, the governing equation is obtained and is solved by the use of Laplace transform. The exact solutions of displacement components and bending moment are obtained. In order to verify the solutions of analysis, finite element analysis is performed and the results shows good agreement. Then, frequency response curves for displacement and bending moment are obtained. In deriving the governing equations and the solutions, nondimensional parameter of the exciting frequency and the magnitude of exciting force are extracted. As the displacement components are obtained, the remaining bending strain, slope, curvature, shear force, etc. can also be derived. With the results of this work, the responses of a free ring excited on multiple points with different frequencies can also be obtained easily by superposition.

속도시간이력을 이용한 변위 추정 알고리즘에 관한 실험적 검증 (Experimental Verification of Displacement Estimation Algorithm using Velocity Time History)

  • 조성호;전준창;황선근;이희현
    • 한국안전학회지
    • /
    • 제30권4호
    • /
    • pp.99-105
    • /
    • 2015
  • In this study, displacement estimation algorithm, which is not requiring an absolute reference point unlike the conventional displacement measurement method, is developed using the geophone. To estimate displacement of the bridge, measured velocity time signal is integrated in the frequency domain. And, the estimated displacement is compared with the measured result using a conventional method. Based on the dynamic field test results, it was found that the estimated displacement by the present algorithm is similar to that of a conventional method. The displacement estimation algorithm proposed in this paper can be effectively applied to measure the displacement of a structure, which is difficult to install a displacement transducer at the fixed point.