• Title/Summary/Keyword: displacement field

Search Result 1,511, Processing Time 0.027 seconds

The Comparative Kinematic Analysis of a Volleyball Spike Serve (배구 스파이크 서브 동작의 운동학적 비교 분석)

  • Park, Jong-Chul;Back, Jin-Ho;Lee, Jin-Taek
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.4
    • /
    • pp.671-680
    • /
    • 2009
  • We performed a study to obtain kinematic data on the characteristics of spike serving techniques used by volleyball players, including other basic data that will be useful for in-field applications. We used three-dimensional videography to compare good tough serves and serve errors. The subjects were 3 left attackers whose spike serves were videographed (60 fileds/s). The three-dimensional coordinates were calculated using the direct linear transformation method and then analyzed using the Kwon 3D software program version 3.1. There was no difference in time elapsed. However, the vertical displacement of the center of body mass(CM) differed between the 2 types of serves: in successful serves, the CM tended to be lower, as did the maximum ball height at the time of hitting. Further, the higher the level of the hitting hand was at the moment of impact, the higher was the likelihood of scoring points. In good serves, the players tended to accelerate their CM movement just before jumping to hit the ball and descend rapidly at the moment of hitting. The hand speed along with ball velocity during the impact was proven to be higher in successful serves. Moreover, in successful serves, the shoulder angles increased to a greater extent while the elbow angles were maintained constant. This possibly resulted in faster and more precise serves. An important observation was that the angle of trunk inclination during the jump did not increase with the swing of the shoulders, muscle tendon complex.

Structural, Paleomagnetic and Petrological Studies of the Chugaryeong Rift Valley (추가령(標哥嶺) 지구대(地構帶)의 지질구조(地質構造), 고지자기(古地磁氣) 및 암석학적(岩石學的) 연구(硏究))

  • Kim, Kyu Han;Kim, Ok Joon;Min, Kyung Duck;Lee, Youn Soo
    • Economic and Environmental Geology
    • /
    • v.17 no.3
    • /
    • pp.215-230
    • /
    • 1984
  • Petrological, paleomagnetic, geomorphological and structural studies on the southern part of, so called, Chugaryeong rift valley, have been carried out in order to clarify the nature of the rift valley. Three stages of volcanic activities characterized by Jijangbong acidic volcanic rocks and tholeiitic and andesitic basalt of Cretaceous age(?), and Jongok Quaternary olivine basalt occurred along the Dongducheon fault line. Jijangbong acidic volcanic rocks distributed in the central part of the studied area consist of rhyodacite, acidic tuff and tuff breccia, which are bounded by Dongsong fault on the east and Daegwangri fault on the west. The Jongok basalt differs from those of Ulrung and Jeju islands in mineralogy, chemical composition and differentiation. Jongok basalt distributed along the Hantan river dilineates the vesicles curved toward downstream direction and increment of numbers and thickness of lava flow toward upstream direction. These facts suggest that lava flowed from upstream side of the river. Rectangular drainage patterns also support the presence of the Dongducheon, Pocheon, Wangsukcheon and Kyonggang faults which were previously known. LANDSAT image, however, does not show any lineaments which could be counted as a graben or rift valley. Displacement of Precambrian quartzite and Jurassic Daedong supergroup along the southwestern extension of the Dongducheon fault shows the right lateral movement. The Paleomagnetic study of the tholeiitic and andesitic basalts from Baegeuri, Jangtanri and Tonghyeonri located at 2. 3km east, 0km east, and 1.5km west of Dongducheon fault respectively shows that their VGP(Virtual Geomagnetic Pole) being to intermediate geomagnetic field of short duration which suggests that they formed in almost same period. Mean VGP of Jongok basalt is located 82.4N and 80.6E. This is in good coincidence with worldwide VGP of Plio-Pleistocene indicating that Jongok basalt was extruded during Plio-Pleistocene epoch, and suggesting that the studied area has been tectonically stable since then. From the present study, the tectonic episode of the region is concluded as following three stages. 1. The 1st period is worked by the Daebo orogeny of Jurassic during which granodiorite was intruded in Precambrian basement. 2. The 2nd period is the time when right lateral strike-slip fault of NNE-SSW direction was formed probably during late Cretaceous to Paleogene and the Jijangbong acidic volcanic rocks and the older basalts were extruded. 3. The 3rd period is the time when the fault was rejuvenated during Pliocene or Pleistocene accompanied by the eruption of Jongok basalt. As a conclusion, geologic structure of the studied area is rather fault line valley than graben or rift valley, which is formed by differential erosion along the Dongducheon fault suggesting a continuation of the Sikhote-Alin fault. The volcanic rocks including the Jijangbong acidic rocks, tholeiitic-andesitic basalt and olivine basalt are associated with this fault line.

  • PDF

Surface Electrode Modification and Improved Actuation Performance of Soft Polymeric Actuator using Ionic Polymer-Metal Composites (이온성고분자-금속복합체를 이용한 유연고분자 구동체의 표면특성 개선과 구동성 향상)

  • Jung, Sunghee;Lee, Myoungjoon;Song, Jeomsik;Lee, Sukmin;Mun, Museoung
    • Applied Chemistry for Engineering
    • /
    • v.16 no.4
    • /
    • pp.527-532
    • /
    • 2005
  • Ionic polymer metal composites (IPMC) are soft polymeric smart materials having large displacement at low voltage in air and water. The polymeric electrolyte actuator consists of a thin and porous membrane and metal electrodes plated on both faces, in impregnation electro-plating method. The response and actuation of actuator are governed. Among many factors governing the activation and response of IPMC actuator, the surface electrode plays an important role. In this study, the well-designed modification of electrode surface was carried out in order to improve the chemical stability well as electromechanical characteristics of the IPMC actuator. We employed Ion Beam Assisted Deposition (IBAD) method to prepare the topologically homogeneous thin surface electrode. After roughing the surface of Nafion membrane in order to get a larger surface area, the IPMC was prepared by impregnation for electro-plating and re- coating on the surface through traditional chemical deposition, followed by an additional surface treatment with high conductive metals with IBAD. It was observed that our IPMC specimen shows the enhanced surface electrical properties as well as the improved actuation and response characteristics under applied electric field.

Calculation of Deflection Using the Acceleration Data for Concrete Bridges (가속도 계측 자료를 이용한 콘크리트 교량의 처짐 산정)

  • Yun, Young Koun;Ryu, Hee Joong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.5
    • /
    • pp.92-100
    • /
    • 2011
  • This paper describes a numerical modeling for deflection calculation using the natural frequency response that is measured acceleration response for concrete bridges. In the formulation of the dynamic deflection, the change amounts and the transformed responses about six kinds of free vibration responses are defined totally. The predicted response can be obtained from the measured acceleration data without requiring the knowledge of the initial velocity and displacement information. The relationship between the predicted response and the actual deflection is derived using the mathematical modeling that is induced by the process of a acceleration test data. In this study, in order to apply the proposed response predicted model to the integration scheme of the natural frequency domain, the Fourier Fast Transform of the deflection response is separated into the frequency component of the measured data. The feasibility for field application of the proposed calculation method is tested by the mode superposition method using the PSC-I bridges superstructures under several cases of moving load and results are compared with the actually measured deflections using transducers. It has been observed that the proposed method can asses the deflection responses successfully when the measured acceleration signals include the vehicle loading state and the free vibration behavior.

An Experimental Study on Behavior Characteristics of Geosynthetics Reinforced Retaining Earth Wall (보강압성토 옹벽의 거동 특성에 관한 실험적 연구)

  • Noh, Taekil;Lee, Song
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.3
    • /
    • pp.29-37
    • /
    • 2012
  • This study is to find out the characteristics of the behavior of Geosyntehtic Reinforced Retaining Earth Wall(GRREW) through the laboratory experiment with the reduced-scale model, and to verify the effect of reinforcement by materials of GRREW. The loading tests after combining nonwoven geosynthetic, re-bar mesh nets and drainage blocks respectively among the components of the GRREW were performed in three cases of their slopes. In the cases of the behavior analysis including all of the components of the GRREW, the maximum horizontal displacement was generated 8.4mm at the location of 0.57H in the slope of 1:0.3; 3.8mm at the location of 0.57H in the slope of 1:0.6; 3.6mm at the location of 0.86H in the slope of 1:1.0. On average, the horizontal displacements of the GRREW were reduced by 83.8% against those of the original slopes. Lastly, seepage analysis and slope stability analysis were performed by modelling section of field, to confirm the effect of installation of drainage block in GRREW. We can confirm to compare increasing the slope safe factor and decreasing ground water in accordance with drainage blocks.

Moment Magnitude Determination Using P wave of Broadband Data (광대역 지진자료의 P파를 이용한 모멘트 규모 결정)

  • Hwang, Eui-Hong;Lee, Woo-Dong;Jo, Bong-Gon;Jo, Beom-Jun
    • Journal of the Korean Geophysical Society
    • /
    • v.10 no.1
    • /
    • pp.1-12
    • /
    • 2007
  • A method to quickly estimate broadband moment magnitudes (Mwp) to warn regional and teleseismic tsunamigenic earthquakes is tested for application of the method to the different seismic observation environment. In this study, the Mwp is calculated by integrating far-field P-wave or pP-wave of vertical component of displacement seismograms in time domain from earthquakes, having magnitude greater than 5.0 and occurred in and around the Korean peninsula from 2000 to 2006. We carefully set up the size of the time window for the computations to exclude S wave phases and other phases following after the P wave phase. The P wave velocities and the densities from the averaged Korean crustal model are used in the computations. Instrumental correction was performed to remove dependency on the seismograph. The Mwp after the instrumental correction is about 0.1 greater than the Mwp before the correction. The comparison of our results to the those of foreign agencies such as JMA and Havard CMT catalogues shows a higher degree of similarity. Thus our results provide an effective tool to estimate the earthquake size, as well as to issue the necessary information to a tsunami warning system when the effective earthquake occurs around the peninsula.

  • PDF

Kernel Integration Scheme for 2D Linear Elastic Direct Boundary Element Method Using the Subparametric Element (저매개변수 요소를 사용한 2차원 선형탄성 직접 경계요소법의 Kernel 적분법)

  • Jo, Jun-Hyung;Park, Yeongmog;Woo, Kwang-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.5
    • /
    • pp.413-420
    • /
    • 2012
  • In this study, the Kernel integration scheme for 2D linear elastic direct boundary element method has been discussed on the basis of subparametric element. Usually, the isoparametric based boundary element uses same polynomial order in the both basis function and mapping function. On the other hand, the order of mapping function is lower than the order of basis function to define displacement field when the subparametric concept is used. While the logarithmic numerical integration is generally used to calculate Kernel integration as well as Cauchy principal value approach, new formulation has been derived to improve the accuracy of numerical solution by algebraic modification. The subparametric based direct boundary element has been applied to 2D elliptical partial differential equation, especially for plane stress/strain problems, to demonstrate whether the proposed algebraic expression for integration of singular Kernel function is robust and accurate. The problems including cantilever beam and square plate with a cutout have been tested since those are typical examples of simple connected and multi connected region cases. It is noted that the number of DOFs has been drastically reduced to keep same degree of accuracy in comparison with the conventional isoparametric based BEM. It is expected that the subparametric based BEM associated with singular Kernel function integration scheme may be extended to not only subparametric high order boundary element but also subparametric high order dual boundary element.

Case Study on the Countermeasure Methods and Collapsed Sources of Segmental Retaining Wall Considering Site Conditions (시공환경을 고려한 블록식 보강토옹벽의 붕괴요인 분석 및 대책방안 사례연구)

  • Han, Jung-Geun;Cho, Sam-Deok;Jeong, Sang-Seom;Lee, Kwang-Wo;Kim, Ji-Sun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.4 no.3
    • /
    • pp.35-43
    • /
    • 2005
  • The geosynthetic reinforced segmental retaining walls(SRW) are improved that the disadvantage of existed retaining wall and the workability in field. Recently, the segmental retaining wall is replacing the exited wall because it is quickly advanced to using by the block in-situ. The use, therefore, is increasing. But, the trends of the large scaled construction was developed that the problems likely to crack and collapse, those are caused of careless in design and construction of SRW not considering about various surrounding conditions. In this study, the cause analysis on destructed SRW was carried out that based on the datum of measured displacement of walls, rainfall features and ground sounding conditions. Also, the analysis of the global slope stability was carried out on collapsed section and non-collapsed section using critical equilibrium method. For the rational stability and analysis of slope including SRW structure, the site conditions including situations of topography, ground and histories of construction and collapse etc should be considered. The rational countermeasure methods for non-collapsed and collapsed areas may be sustained as much as possible current state.

  • PDF

Dynamic Behavior of Submerged Floating Tunnel by Underwater Explosion (수중폭발에 의한 해중터널의 동적거동)

  • Hong, Kwan-Young;Lee, Gye-Hee;Lee, Seong-Lo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.5
    • /
    • pp.215-226
    • /
    • 2018
  • In this paper, to estimate the dynamic behavior of a submerged floating tunnel(SFT) by underwater explosion(UE), the SFT is modeled and analyzed by the explicit structural analysis package LS-DYNA. The section of SFT near to explosion point is modeled to shell and solid elements using elasto-plasticity material model for concrete tubular section and steel lining. And the other parts of the SFT are modeled to elastic beam elements. Also, mooring lines are modeled as tension-only cable elements. Total mass of SFT is including an added mass by hydrodynamic effect. The buoyancy on the SFT is considered in its initial condition using a dynamic relaxation method. The accuracy and the feasibility of the analysis model aree verified by the results of series of free field analysis for UE. And buoyancy ratio(B/W) of SFT, the distance between SFT and an explosion point and the arrangement of mooring line aree considered as main parameters of the explosion analysis. As results of the explosion analysis, the dynamic responses such as the dent deformation by the shock pressure are responded less as more distance between SFT and an explosion point. However, the mooring angle of the diagonal mooring system can not affect the responses such as the horizontal displacement of SFT by the shock pressure.

Effect of Temperature and Compressive Stress on the Dielectric and Piezoelectric Properties of PIN-PMN-PT Single Crystal (온도 및 압축응력 변화에 따른 PIN-PMN-PT 단결정의 유전 및 압전 특성)

  • Lim, Jae Gwang;Park, Jae Hwan;Lee, Jeongho;Lee, Sang Goo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.63-68
    • /
    • 2019
  • Dielectric and piezoelectric properties of PIN-PMN-PT piezoelectric single crystals with variation of temperature and compressive stress were investigated. The crystal phase of the single crystal was changed from the ferroelectric rhombohedral structure to tetragonal structure in the 110℃ region and from the tetragonal structure to the paraelectric cubic structure in the 190℃ region. The piezoelectric constant and relative dielectric constant were calculated from the rate of change of polarization and displacement with the application of electric field, which was similar to the value measured from the instrument. As the compressive stress applied to the sample increased, the piezoelectric constant d33 and relative dielectric constant values tended to increase. When the compressive stress applied to the sample at 5℃ was 60 MPa, the d33 was calculated as 4,500 pC/N. At 60℃, the relative dielectric constant of 62000 was calculated when the compressive stress applied to the sample was 40 MPa. The increase in piezoelectric constant and relative dielectric constant when the compressive stress increased could be attributed to the phase transition from the rhombohedral structure to orthorhombic.