• Title/Summary/Keyword: displacement components

Search Result 521, Processing Time 0.026 seconds

The Performance Improvement of a Linear CCD Sensor Using an Automatic Threshold Control Algorithm for Displacement Measurement

  • Shin, Myung-Kwan;Choi, Kyo-Soon;Park, Kyi-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1417-1422
    • /
    • 2005
  • Among the sensors mainly used for displacement measurement, there are a linear CCD(Charge Coupled Device) and a PSD(Position Sensitive Detector) as a non-contact type. Their structures are different very much, which means that the signal processing of both sensors should be applied in the different ways. Most of the displacement measurement systems to get the 3-D shape profile of an object using a linear CCD are a computer-based system. It means that all of algorithms and mathematical operations are performed through a computer program to measure the displacement. However, in this paper, the developed system has microprocessor and other digital components that make the system measure the displacement of an object without a computer. The thing different from the previous system is that AVR microprocessor and FPGA(Field Programmable Gate Array) technology, and a comparator is used to play the role of an A/D(Analog to Digital) converter. Furthermore, an ATC(Automatic Threshold Control) algorithm is applied to find the highest pixel data that has the real displacement information. According to the size of the light circle incident on the surface of the CCD, the threshold value to remove the noise and useless data is changed by the operation of AVR microprocessor. The total system consists of FPGA, AVR microprocessor, and the comparator. The developed system has the improvement and shows the better performance than the system not using the ATC algorithm for displacement measurement.

  • PDF

NUMERICAL ANALYSIS OF A LAMINATED COMPOSITE ELASTIC FIELD WITH ROLLER GUIDED PANEL

  • Go, Jae-Gwi;Ali, Mohamed Afsar
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.14 no.2
    • /
    • pp.67-78
    • /
    • 2010
  • An elastic field composed of symmetric cross-ply laminated material is analyzed in roller guided panel. The plane stress elasticity problem is formulated in terms of two displacement parameters with mixed boundary conditions. The numerical solution for two displacement parameters is obtained using a finite element method considering a panel of glass/epoxy laminated composite. Some components of stress and displacement at different sections of panel are displayed. The results makes sure that the formulation developed in this study can be applied to analyze the characteristics of elastic field made of laminated composite under any boundary conditions.

Fatigue Damage Assessment for Steel Structures Subjected to Earthquake (지진에 대한 강구조물의 피로손상도 추정법)

  • Song, Jong Keol;Yun, Chung Bang;Lee, Dong Guen
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.1 s.30
    • /
    • pp.95-105
    • /
    • 1997
  • Structures subjected to strong seismic excitation may undergo inelastic deformation cycles. The resulting cumulative fatigue damage process reduces the ability of structures and components to withstand seismic loads. Yet, the present earthquake resistance design methods focus mainly on the maximum displacement ductility, ignoring the effect of the cyclic responses. The damage parameters closely related to the cumulative damage need to be properly reflected on the aseismic design methods. In this study, two cumulative damage assessment methods derived from the plastic fatigue theory are investigated. The one is based on the hysteretic ductility amplitude, and the other is based on the dissipated hysteretic energy. Both methods can consider the maximum ductility and the cyclic behavior of structural response. The validity of two damage methods has been examined for single degree of freedom structures with various natural frequencies against two different earthquake excitations.

  • PDF

Analysis of a Crack Propagating Along the Gradient in Functionally Gradient Materials with Exponential Property Gradation (지수형적 물성변화를 갖는 함수구배 재료에서 구배방향을 따라 전파하는 균열 해석)

  • Lee, Kwang-Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.113-118
    • /
    • 2003
  • Stress and displacement fields for a propagating crack in a functionally gradient material (FGM) which has exponentially varying elastic and physical properties along the direction of the crack propagation, are derived. The equations of motion in nonhomogeneous material are developed using displacement potentials. The solutions to the displacement fields and the stress fields for a crack propagating at constant speed along the gradient are obtained through an asymptotic analysis. The influences of nonhomogeneity on the higher order terms of the stress fields are explicitly brought out. Using these stress components, isochromatic fringes around the stationary crack are generated at crack for different nonhomogeneity and the effects of nohonhomgeneity on these fringes are discussed.

  • PDF

Modelling of High-Speed Pantograph and Controller Design Using Disturbance Observer (고속 팬터그래프의 새로운 동적 모형 및 외란관측기를 이용한 제어기 설계)

  • Jo, Nam-Hoon;Lee, Kang-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2233-2239
    • /
    • 2007
  • The pantograph-catenary system is one of important components for high-speed rail system that are powered electrically. Electrical power is delivered from a catenary structure to the train via a pantograph and thus it is very important to regulate the contact force between catenary and pantograph. Although a lot of research results for active pantograph have been reported, most of them have made an unrealistic assumption that the catenary displacement is constant with respect to the time. In this paper, we present a new pantograph model that regards the catenary displacement as an unknown disturbance input. Moreover, a disturbance observer based controller is proposed to remove the effect of disturbance, i.e., the catenary displacement variation. The computer simulation result shows that the substantial improvement in regulating the contact force can be achieved by the proposed controller.

Assessment of post-earthquake serviceability for steel arch bridges with seismic dampers considering mainshock-aftershock sequences

  • Li, Ran;Ge, Hanbin;Maruyama, Rikuya
    • Earthquakes and Structures
    • /
    • v.13 no.2
    • /
    • pp.137-150
    • /
    • 2017
  • This paper focuses on the post-earthquake serviceability of steel arch bridges installed with three types of seismic dampers suffered mainshock-aftershock sequences. Two post-earthquake serviceability verification methods for the steel arch bridges are compared. The energy-absorbing properties of three types of seismic dampers, including the buckling restrained brace, the shear panel damper and the shape memory alloy damper, are investigated under major earthquakes. Repeated earthquakes are applied to the steel arch bridges to examine the influence of the aftershocks to the structures with and without dampers. The relative displacement is proposed for the horizontal transverse components in such complicated structures. Results indicate that the strain-based verification method is more conservative than the displacement-base verification method in evaluating the post-earthquake serviceability of structures and the seismic performance of the retrofitted structure is significantly improved.

Prediction and Evaluation of Rubber Components using Large Deformation Non-linear Finite Element Analysis (비선형 대변형 유한요소해석을 이용한 방진고무부품의 특성예측 및 평가)

  • Woo, Chang-Su;Kim, Wan-Doo;Cho, Seong-Do-Seong
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.286-291
    • /
    • 2000
  • The finite element analyses of mechanical rubber components are executed to predict the behavior of deformation and stress distribution in destgn step. The non-linear properties of rubber which are described as strain energy functions are important parameters to design and evaluate rubber components. These are determined by material tests which are tension, compression and shear test. The behaviors of loads-displacements of rubber components such as a roll tubber spring and resilient ring and additional spring for railway suspension system are evaluated by using commercial FEA code. It is shown that the results by FEA simulations are in close agreement with the test results.

  • PDF

Fractional effect in an orthotropic magneto-thermoelastic rotating solid of type GN-II due to normal force

  • Lata, Parveen;Himanshi, Himanshi
    • Structural Engineering and Mechanics
    • /
    • v.81 no.4
    • /
    • pp.503-511
    • /
    • 2022
  • In this article, we have examined the effect of fractional order parameter in a two-dimensional orthotropic magneto-thermoelastic solid in generalized thermoelasticity without energy dissipation with fractional order heat transfer in the context of hall current, rotation and two-temperature due to normal force. Laplace and Fourier transform techniques are used to obtain the solution of the problem. The expressions for displacement components, stress components, current density components and conductive temperature are obtained in transformed domain and then in physical domain by using numerical inversion method. The effect of fractional parameter on all the components has been depicted through graphs. Some special cases are also discussed in the present investigation.

Passive 3D motion optical data in shaking table tests of a SRG-reinforced masonry wall

  • De Canio, Gerardo;de Felice, Gianmarco;De Santis, Stefano;Giocoli, Alessandro;Mongelli, Marialuisa;Paolacci, Fabrizio;Roselli, Ivan
    • Earthquakes and Structures
    • /
    • v.10 no.1
    • /
    • pp.53-71
    • /
    • 2016
  • Unconventional computer vision and image processing techniques offer significant advantages for experimental applications to shaking table testing, as they allow the overcoming of most typical problems of traditional sensors, such as encumbrance, limitations in the number of devices, range restrictions and risk of damage of the instruments in case of specimen failure. In this study, a 3D motion optical system was applied to analyze shake table tests carried out, up to failure, on a natural-scale masonry structure retrofitted with steel reinforced grout (SRG). The system makes use of wireless passive spherical retro-reflecting markers positioned on several points of the specimen, whose spatial displacements are recorded by near-infrared digital cameras. Analyses in the time domain allowed the monitoring of the deformations of the wall and of crack development through a displacement data processing (DDP) procedure implemented ad hoc. Fundamental frequencies and modal shapes were calculated in the frequency domain through an integrated methodology of experimental/operational modal analysis (EMA/OMA) techniques with 3D finite element analysis (FEA). Meaningful information on the structural response (e.g., displacements, damage development, and dynamic properties) were obtained, profitably integrating the results from conventional measurements. Furthermore, the comparison between 3D motion system and traditional instruments (i.e., displacement transducers and accelerometers) permitted a mutual validation of both experimental data and measurement methods.

Effect of Neutron Energy Spectra on the Formation of the Displacement Cascade in ${\alpha}-Iron$

  • Kwon Junhyun;Seo Chul Gyo;Kwon Sang Chul;Hong Jun-Hwa
    • Nuclear Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.497-505
    • /
    • 2003
  • This paper describes a computational approach to the quantification of primary damage under irradiation and demonstrates the effect of neutron energy spectra on the formation of the displacement cascade. The development of displacement cascades in ${\alpha}-Iron$ has been simulated using the MOLDY code - a molecular dynamics code for simulating radiation damage. The primary knock-on atom energy, key input to the MOLDY code, was determined from the SPECTER code calculation on two neutron spectra. The two neutron spectra include; (i) neutron spectrum in the instrumented irradiation capsule of the high-flux advanced neutron application reactor (HANARO), and (ii) neutron spectrum at the inner surface of the reactor pressure vessel steel for the Younggwang nuclear power plant No.5 (YG 5). Minor differences in the normalized neutron spectra between the two spectra produce similar values of PKA energy, which are 4.7 keV for HANARO and 5.3 keV for YG 5. This similarity implies that primary damage to the components of the commercial nuclear reactors should be well simulated by irradiation in the HANARO. Moreover, the application of the MD calculations corroborates this statement by comparing cascades simulation results.