• Title/Summary/Keyword: displacement coefficient method

Search Result 228, Processing Time 0.023 seconds

Seismic Response Analysis of the Concrete Face Rockfill Dam (콘크리트표면차수벽령 석괴댐의 지진응답해석)

  • 오병현;임정열;이종옥
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.147-154
    • /
    • 2001
  • In this study, comprehensive seismic performance analysis were performed for the concrete face rockfill dam(CFRD) designed seismic coefficient method(0. 10g). The static and pseudo-static FEM analysis, limited equilibrium method and dynamic FEM analysis were used for the dam safety analysis. The results of the seismic analysis were that the minimum factor of safety of down slope was 1.2 and horizontal displacement increased 8cm and vertical displacement increased 1.2cm at dam crest rather than those of static condition. The model dam did not show any serious tai lure in seismic stabi1ity for 0.13g. And much more research is still necessary in seismic safety of CFRD.

  • PDF

Optimization of flexure stiffness of FGM beams via artificial neural networks by mixed FEM

  • Madenci, Emrah;Gulcu, Saban
    • Structural Engineering and Mechanics
    • /
    • v.75 no.5
    • /
    • pp.633-642
    • /
    • 2020
  • Artificial neural networks (ANNs) are known as intelligent methods for modeling the behavior of physical phenomena because of it is a soft computing technique and takes data samples rather than entire data sets to arrive at solutions, which saves both time and money. ANN is successfully used in the civil engineering applications which are suitable examining the complicated relations between variables. Functionally graded materials (FGMs) are advanced composites that successfully used in various engineering design. The FGMs are nonhomogeneous materials and made of two different type of materials. In the present study, the bending analysis of functionally graded material (FGM) beams presents on theoretical based on combination of mixed-finite element method, Gâteaux differential and Timoshenko beam theory. The main idea in this study is to build a model using ANN with four parameters that are: Young's modulus ratio (Et/Eb), a shear correction factor (ks), power-law exponent (n) and length to thickness ratio (L/h). The output data is the maximum displacement (w). In the experiments: 252 different data are used. The proposed ANN model is evaluated by the correlation of the coefficient (R), MAE and MSE statistical methods. The ANN model is very good and the maximum displacement can be predicted in ANN without attempting any experiments.

Pseudo seismic and static stability analysis of the Torul Dam

  • Karabulut, Muhammet;Genis, Melih
    • Geomechanics and Engineering
    • /
    • v.17 no.2
    • /
    • pp.207-214
    • /
    • 2019
  • Dams have a great importance on energy and irrigation. Dams must be evaluated statically and dynamically even after construction. For this purpose, Torul dam built between years 2000 and 2007 Harsit River in Gümüşhane province, Turkey, is selected as an application. The Torul dam has 137 m height and 322 GWh annual energy production capacity. Torul dam is a kind of concrete face rock fill dam (CFRD). In this study, static and pseudo seismic stability of Torul dam was investigated using finite element method. Torul dam model is constituted by numerical stress analysis named Phase2 which is based on finite element method. The dam was examined under 11 different water filling levels. Thirteenth stage of the numerical model is corresponding full reservoir condition which water filled up under crest line. Besides, pseudo static coefficients for dynamic condition applied to the dam in fourteenth stage of the model. Stability assessment of the Torul dam has been discussed according to the displacement throughout the dam body. For static and pseudo seismic cases, the displacements in the dam body have been compared. The total displacements of the dam according to its the empty state increase dramatically at the height of the water level of about 70 m and above. Compared to the pseudo-seismic analysis, the displacement of dam at the full reservoir condition is approximately two times as high as static analysis.

Mathematical formulations for static behavior of bi-directional FG porous plates rested on elastic foundation including middle/neutral-surfaces

  • Amr E. Assie;Salwa A. Mohamed;Alaa A. Abdelrahman;Mohamed A. Eltaher
    • Steel and Composite Structures
    • /
    • v.48 no.2
    • /
    • pp.113-130
    • /
    • 2023
  • The present manuscript aims to investigate the deviation between the middle surface (MS) and neutral surface (NS) formulations on the static response of bi-directionally functionally graded (BDFG) porous plate. The higher order shear deformation plate theory with a four variable is exploited to define the displacement field of BDFG plate. The displacement field variables based on both NS and on MS are presented in detail. These relations tend to get and derive a new set of boundary conditions (BCs). The porosity distribution is portrayed by cosine function including three different configurations, center, bottom, and top distributions. The elastic foundation including shear and normal stiffnesses by Winkler-Pasternak model is included. The equilibrium equations based on MS and NS are derived by using Hamilton's principles and expressed by variable coefficient partial differential equations. The numerical differential quadrature method (DQM) is adopted to solve the derived partial differential equations with variable coefficient. Rigidities coefficients and stress resultants for both MS and NS formulations are derived. The mathematical formulation is proved with previous published work. Additional numerical and parametric results are developed to present the influences of modified boundary conditions, NS and MS formulations, gradation parameters, elastic foundations coefficients, porosity type and porosity coefficient on the static response of BDFG porous plate. The following model can be used in design and analysis of BDFG structure used in aerospace, vehicle, dental, bio-structure, civil and nuclear structures.

Effect of Nonlinear Analysis Procedures for Seismic Responses of Reinforced Concrete Wall Structure (철근콘크리트 벽체구조물의 지진응답에 대한 비선형 해석기법의 영향)

  • Song, Jong-Keol;Jang, Dong-Hui;Chung, Yeong-Hwa
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.659-675
    • /
    • 2006
  • Recently, significant progress has been made in performance-based engineering methods that rely mainly on nonlinear static seismic analysis procedures. The Capacity Spectrum Method (CSM) and the Displacement Coefficient Method (DCM) are the representative nonlinear static seismic analysis procedures. In order to evaluate the applicability of the procedures to the seismic evaluation and design process of new and existing structures, the accuracy of both CSM and DCM should be evaluated in advance. The accuracy of seismic responses by the nonlinear static procedures is evaluated in comparison with the shaking table test results for the structural wall specimen subjected to the far field and near field earthquakes. Also conducted are comparative studies where the shaking table test results are compared with those from nonlinear dynamic analysis procedures, i.e., Single-Degree-of-Freedom (SDOF), equivalent SDOF and Multi-Degree-of-Freedom (MDOF) systems.

Feasibility Study to Actively Compensate Deformations of Composite Structure in a Space Environment

  • Farinelli, Ciro;Kim, Hong-Il;Han, Jae-Hung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.2
    • /
    • pp.221-228
    • /
    • 2012
  • An active compensation method for the deformation of composite structures using additional controllable metal parts is proposed, and its feasibility is experimentally investigated in a simulated space environment. Composite specimens are tested in a vacuum chamber, which is able to maintain pressure on the order of 10-3 torr and interior temperature in the range of ${\pm}30^{\circ}C$. The displacement-measuring interferometer system, which consists of a heterodyne HeNe laser and an interferometer, is used to measure the displacement of the whole structure. Meanwhile, the strain of the composite part and temperature of both parts are measured by fiber Bragg grating sensors and thermistors, respectively. The displacement of the composite structure is maintained within a tolerance of ${\pm}1{\mu}m$ by controlling the elongation of the metal part, which is bonded to the end of the composite part. Also, the possibility of fiber Bragg grating sensors as control input sensors is successfully demonstrated using a proper corrective factor based on the specimen temperature gradient data.

The role of wall configuration and reinforcement type in selecting the pseudo-static coefficients for reinforced soil walls

  • Majid Yazdandoust;Amirhossein Rasouli Jamnani;Mohsen Sabermahani
    • Geomechanics and Engineering
    • /
    • v.35 no.5
    • /
    • pp.555-570
    • /
    • 2023
  • In the current study, a series of experimental and analytical evaluations were performed to introduce the horizontal pseudo static coefficient (kh) as a function of the wall configuration and the reinforcement type for analyzing reinforced soil walls. For this purpose, eight shaking table tests were performed on reduced-scale models of integrated and two-tiered walls reinforced by metal strip and geogrid to determine the distribution of dynamic lateral pressure in the walls. Then, the physical models were analyzed using Mononobe-Okabe method to estimate the value of kh required to establish the dynamic lateral pressures similar to those observed in shaking table tests. Based on the results, the horizontal pseudo static coefficient and the position of resultant lateral force (R) were introduced as a function of the horizontal peak ground acceleration (HPGA), the wall configuration, the reinforcement type as well as maximum wall displacement.

Determination of Urban Surface Aerodynamic Characteristics Using Marquardt Method

  • Zhang, Ning;Jiang, Weimei;Gao, Zhiqiu;Hu, Fei;Peng, Zhen
    • Wind and Structures
    • /
    • v.12 no.3
    • /
    • pp.281-283
    • /
    • 2009
  • Marquardt method is used to estimate the aerodynamic parameters in urban area of Beijing City, China, including displacement length (d), roughness length ($z_0$) and friction velocity (u*) and drag coefficient. The surface drag coefficient defined as the ratio between friction velocity and mean wind speed is 0.125 in our research, which is close to typical urban area value. The averaged d and $z_0$ are 1.2 m and 7.6 m. d and $z_0$ change with direction because of the surface heterogeneity over urban surface and reach their maximum values at S-SW sector, this tendency agrees with the surface rough element distribution around the observation tower.

Performance Analysis of Magnetic Power Pads for Inductive Power Transfer Systems with Ferrite Structure Variation

  • Kim, Minkook;Byun, Jongeun;Lee, Byoung Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1211-1218
    • /
    • 2017
  • In this paper, performance of rectangular shaped magnetic power pads for inductive power transfer (IPT) system according to ferrite structure is analyzed. In order to evaluate the influences of ferrite structure, six cases of magnetic power pads are proposed. Self-inductance, coupling coefficient, quality factor, and coil to coil efficiency are compared as the displacement increases in the direction of x or y axis. For accurate estimation, finite element method (FEM) simulation is used and loss components of the power pads are numerically calculated and considered. Through the simulation and measured results, effectiveness of protrusive and enveloping ferrite structure is identified.

Development of Performance-Based Seismic Design of RC Column Retrofitted By FRP Jacket using Direct Displacement-Based Design (직접변위기반설계법에 의한 철근콘크리트 기둥의 FRP 피복보강 내진성능설계법의 개발)

  • Cho, Chang-Geun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.105-113
    • /
    • 2007
  • In the current research, an algorithm of performance-based seismic retrofit design of reinforced concrete columns using FRP jacket has been proposed. For exact prediction of the nonlinear flexural analysis or FRP composite RC members, multiaxial constitutive laws of concrete and composite materials have been presented. For seismic retrofit design, an algorithm of direct displacement-based design method (DDM) proposed by Chopra and Goel (2001) has been newly applied to determine the design thickness of FRP jacket in seismic retrofit of reinforced concrete columns. To compare with the displacement coefficient method (DCM), the DDM gives an accurate prediction of the target displacement in highly nonlinear region, since the DCM uses the elastic stiffness before reaching the yield load as the effective stiffness but the DDM uses the secant stiffness.