• Title/Summary/Keyword: dispersivity

Search Result 49, Processing Time 0.016 seconds

A Comparative Study of Tracer Tests in Fractured and Porous Media (단열 및 다공질 대수층에서의 추적자 시험연구)

  • 이진용;이지훈;김용철;천전용;이민효;이강근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.132-135
    • /
    • 2001
  • To understand and compare tracer transport in fractured and porous media. multiple tracer tests were conducted in Wonju and Uiwang sites. The target media were fractured in Wonju site and porous in Uiwang site. It was known that groundwater flow for the two hydrogeologic systems could be represented using a EPM approach. However, the tracer transport in the two aquifer systems was greatly different. In this study, we analyzed the different tracer transport behavior in the two systems, from which our understanding of the tracer dispersion was greatly enhanced. we used bromide and chloride as tracers.

  • PDF

Partitioning Tracer Analysis with Temporal Moments Equations (시간 모멘트식을 이용한 상분할추적자의 해석)

  • Cho, Jong-Soo
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.3
    • /
    • pp.3-9
    • /
    • 2011
  • Partitioning tracers have been used with non-partitioning, inert tracer such Br, for detection, estimation, and monitoring of remediation performance of the subsurface contaminated with nonaqueous phase liquids (NAPLs). Various partitioning tracers with different partition coefficients between aqueous and nonaqueous phase liquids can be used to determine the hydraulic conductivity, dispersivity, and residual mass of NAPLs in the subsurface soil matrices. Temporal moment-generating equations were used to analyze the field pilot-scale test results. The pilot-scale tests included conservative tracer tests and partitioning tracer tests. Analyses of nonaqueous phase liquid distribution and characteristics of groundwater bearing soil media were performed.

The Characteristics of Soil Remediation by Soil Flushing System Using PVDs (연직배수재를 이용한 토양세정시스템의 오염토양정화 특성)

  • Park, Jeong-Jun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.5
    • /
    • pp.76-86
    • /
    • 2007
  • For the purpose of ground improvement by means of soil flushing systems. Incorporated technique with prefabricated vertical drains have been used for dewatering from fine-grained soils. The laboratory model tests were performed by using the flushing tracer solutions for silty soils and recorded the tracer concentration changes with the elapsed time and flow rates. A mathematical model for prediction of contaminant transport using the PVD technology has been developed. The clean-up times for the predictions on both soil condition indicate more of a sensitivity to the dispersivity parameter than to the extracted flow rate and vertical velocity parameters. Based on the results of the analyses, numerical analysis indicate that the most important factor to the in-situ soil remediation in prefabricated vertical drain system is the effective diameter of contaminated soil.

1 D contaminant transport through unsaturated stratified media using EFGM

  • Rupali, S.;Sawant, Vishwas A.
    • Advances in environmental research
    • /
    • v.8 no.1
    • /
    • pp.1-21
    • /
    • 2019
  • In the present study, analysis of contaminant transport through one dimensional unsaturated stratified media using element free Galerkin method has been presented. Element free Galerkin method is a meshfree method. A FORTRAN code has been developed for the same. The developed model is compared with the results available in the literature and are found in good agreement. Further a parametric study has been conducted to examine the effects of various parameters like velocity, dispersivity, retardation factor and effect of saturation on the contaminant flow. The results presented conclude that transport of contaminant is retarded in unsaturated zone in comparison with the saturated zone.

Application of Weibull Distribution Function to Analysis of Breakthrough Curves from Push Pull Tracer Test

  • Hyun-Tae, Hwang;Lee, Kang-Kun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.217-220
    • /
    • 2003
  • In the case of the remediation studies, push pull test is a more time and cost effective mettled than multi-well tracer test. It also gives Just as much or more information than the traditionally used methods. But the data analysis for the hydraulic parameters, there have been some defections such as underestimation of dispersivity, requirement for effective porosity, and calculation of recovery of center of mass to estimate linear velocity. In this research, Weibull distribution function is proposed to estimate the center of mass of breakthrough curve for Push pull test. The hydraulic parameter estimation using Weibull function showed more exact values of center of mass than those of exponential regression for field test data.

  • PDF

Study on preparation and characterization of uniform bismuth nanospheres

  • Ji, Nianjing;Li, Ziqing;Chen, Yang;Wang, Jiyang;Duan, Xiulan;Jiang, Huaidong
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.5
    • /
    • pp.369-371
    • /
    • 2018
  • The uniform and monodisperse bismuth nanospheres were successfully prepared by simple and convenient solvothermal method. The bismuth nitrate was reduced by ethylene glycol at $150-200^{\circ}C$ for 20-30 hrs. The nanospheres were characterized by powder X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The dispersivity of bismuth nanospheres was investigated using optical microscope. The optimum reaction conditions to prepare the uniform bismuth nanospheres with a narrow diameter range was investigated. The results indicate that the monodisperse bismuth nanospheres prepared at $200^{\circ}C$ possess sizes ranging from 100-200 nm. The formation mechanism of the bismuth nanospheres was hypothesized.

A Study of Hydrodynamic Dispersions in the Unsaturated and the Saturated Zone of a Multi-soil Layer Deposit Using a Continuous Injection Tracer Test (복합토양층의 불포화대와 포화대에서 연속주입 추적자시험을 이용한 수리분산특성 연구)

  • Chung, Sang-Yong;Kang, Dong-Hwan;Lee, Min-Hee;Son, Joo-Hyong
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.4
    • /
    • pp.48-56
    • /
    • 2006
  • Using a continuous injection tracer test at a multi-soil layer deposit, the difference of hydrodynamic dispersions in unsaturated and saturated zones were analyzed through breakthrough curves of Rhodamine WT, linear regression of concentration versus time, concentration variation rates versus time, and concentration ratio according to the distance from injection well. As a result of continuous injection tracer test, the difference of the maximum concentrations of Rhodamine WT in unsaturated and saturated zones were 13-15 times after 160 hours, and the increased rate of concentration versus time in unsaturated zone was about 10 times higher than in saturated zone. The fluctuation of Rhodamine WT breakthrough curve and concentration variation rate with time in saturated zone were larger than in unsaturated zone. Rhodamine WT concentration ratio with the distance from the injection well in saturation zone was linearly decreased faster than in unsaturated zone, and the elapsed time necessary for the concentration ratio less than 2 was longer in saturation zone. The differences resulted from the lower concentration and slower hydrodynamic dispersion of Rhodamine WT at the saturation zone of the multi-soil layer deposit, in which groundwater flow significantly flow and aquifer materials have high hydraulic heterogeneity. Effective porosity, longitudinal and transverse dispersivities were estimated $10.19{\sim}10.50%,\;0.80{\sim}1.98m$ and $0.02{\sim}0.04m$, respectively. The field longitudinal dispersivity is over 12 times larger than the laboratory longitudinal dispersivity by the scale-dependent effect.

Effect of CeO2 Addition on De-CH4 and NOx Performance (CH4와 NOx 저감 성능에 관한 CeO2 첨가의 영향)

  • Seo, Choong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.473-479
    • /
    • 2017
  • Due to environmental pollution, hazards of the human body, and global warning, changes in the power train of automobiles are intensifying, and the market forelectronic vehicles is rising. Also, in order to meet the stricter emission regulations forautomobiles with internal combustion engines based on fossil fuel, the proportion of after-treatments for vehicles and vessels is increasing gradually. The objective of this study is to investigate the effectsfrom additive ceric oxide ($CeO_2$) loading amounts to improve the methane ($CH_4$) and nitric oxide (NOx) abatement ability of the natural gas oxidation catalysts(NGOC) reducing toxic gases emitted from compressed natural gas (CNG) buses. Three kinds of NGOC were prepared under the following conditions: fresh and $700^{\circ}C$ for 12hr thermal aging, and the reduction performance of toxic gases was evaluated. Fresh $1Pt-3Pd-1Rh-3MgO-6CeO_2/(Al+Z)$ NGOC containing 6wt% $CeO_2$ had the highest dispersivity of palladium (Pd) with high selectivity to $CH_4$ and improved harmful gas reduction performance. The NGOC with 6wt% $CeO_2$ loaded the least decreased in the dispersivity of the noble metal, and showed the highest reduction of harmful gases due to the thermal durability of $CeO_2$.

A Study on the Flow and Dispersion in the Coastal Unconfined Aquifer (Development and Application of a Numerical Model) (해안지역 비피압 충적 대수층에서의 흐름 및 분산(수치모형의 개발 및 적용))

  • Kim, Sang Jun
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.1
    • /
    • pp.61-72
    • /
    • 2016
  • In Korea, the aquifers at the coastal areas are mostly shallow alluvial unconfined aquifers. To simulate the flow and dispersion in unconfined aquifer, a FDM model has been developed to solve the nonlinear Boussinesq equation. Related analysis and verification have been executed. The iteration method is used to solve the nonlinearity, and the model shows 3-D shape because it is a 2-D y model that consider the undulation of water table and bottom. For the verification of the model, the output of flow module is compared to the 1-D analytic solution of Lee (1989) which have the drawdown or uplift boundary condition, and the two results show almost the same value. and the mass balance of dispersion module shows about 10% error. The developed model can be used for the analysis and design of the flow and dispersion in the unconfined aquifers. The model has been applied to the estuary area of Ssangcheon watershed, and the parameters have been deduced as a result : hydraulic conductivity is 90 m/day, and longitudinal dispersivity is 15 m. And the analysis with these parameters shows that the wells are situated in the influence circle of each others except for No. 7 well. Groundwater discharge to sea is $3700m^3/day$. And the chlorine ion ($cl^-$) concentration at the pumping wells increase at least 1000 mg/L if groundwater dam is not exist, so the groundwater dam plays an important role for the prevention of sea water intrusion.

Effects of Dispersivity of Clay on Thermal Stabilities of PP/Clay Nanocomposites (점토의 분산성이 PP/점토 나노복합재료의 열안정성에 미치는 영향)

  • 박수진;전병렬;송시용;최길영;이종문
    • Polymer(Korea)
    • /
    • v.27 no.5
    • /
    • pp.458-463
    • /
    • 2003
  • The effect of ozone surface treatment of montmorillonite (MMT) was investigated in thermal stabilities of polypropylene (PP) nanocomposites. Sodium montmorillonite (Na$\^$+/-MMT) was organically modified with dodecylammonium chloride. The surface properties of MMT, including the specific surface area (S$\_$BET/), equilibrium spreading pressure ($\pi$$\_$e/), and London dispersive component (${\gamma}$s$\^$L/), were studied by the BET method with $N_2$ adsorption. Also, the thermal stabilities of the nanocomposites were investigated in DSC and TGA. As experimental results, $\pi$$\_$e/ and ${\gamma}$s$\^$L/ of the ozonized dodecylammonium chloride (DA-MK ( $O_3$)) were increased in about 1.7 and 3.5 mJ/ $m^2$, resulting from the increasing of the micropores. From the DSC results, it was found that the melting temperature and crystallization temperature of PP/DA-MK and PP/DA-MK ( $O_3$) were higher that those of pure PP. These results were explained that dodecylammonium chloride of nano-scale led to a nucleation effect for PP crystallization. Also, it was found that E$\_$t/ of the PP/DA-MK ( $O_3$) nanocomposies was increased within about 64 kJ/mol. These results were probably explained by the improvement of dispersivity of DA-MK ( $O_3$) in a PP matrix.