• Title/Summary/Keyword: dispersion method

Search Result 1,631, Processing Time 0.029 seconds

Prediction of Travel Time and Longitudinal Dispersion for Water Pollutant by Using Unit Concentration Response Function (단위오염도틀 이용한 하천 오염물질의 이동시간과 종확산 예측)

  • Kim, Soo-Jun;Kim, Hung-Soo;Kim, Byung-Sik;Seoh, Byung-Ha
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.5 s.166
    • /
    • pp.395-403
    • /
    • 2006
  • This study suggests the use of a simple method, called the unit concentration response function(UCRF) for predicting travel time and dispersion of pollutants with the minimum information of study area instead of numerical models which are widely used In the Previous studies. However, the numerical models require time-consuming, tedious effort, and many data sets. So we derive the UCRF using some components such as travel time, peak concentration, and passage time of pollutant etc. We use the regression equation for the estimations of components which were developed from the investigations of many river basins in USA. This study used the regression equaiton for the UCRF to the accident of Dichloromethane leak into the Nakdong River occurred on June 30, 1994 and applied the UCRF for the predictions of travel time and dispersion. The predictions were compared with the results by QUAL2E model. The results by the regression equaiton and QUAL2E model had a good agreement between observed and simulated concentrations. Therefore, the regression equation for the UCRF which can simply estimate travel time and concentration of pollutants showed its applicability for the ungaged basin.

Dispersion Characteristics of Hydrogen Gas by the Effect of Leakage Hole Size in Enclosure Space (누출공 크기에 따른 밀폐공간 내 수소 가스의 확산 특성)

  • Choi, Jinwook;Li, Longnan;Park, Chul-Woo;Lee, Seong Hyuk;Kim, Daejoong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.26-35
    • /
    • 2016
  • As a potential clean energy resource, the production and consumption of hydrogen gas are expected to gradually increase, so that hydrogen related studies are also increasing. The thermal and chemical properties of hydrogen result in its high flammability; in particular, there is a high risk if leaks occur within an enclosed space. In this study, we applied the computational fluid dynamics method to conduct a numerical study on the leakage behavior of hydrogen gas and compared these numerical study results with an experimental study. The leakage hole diameter was selected as an important parameter and the hydrogen gas dispersion behavior in an enclosed space was investigated through various analytical methods. Moreover, the flammable regions were investigated as a function of the leakage time and leakage hole size. We found that the growth rate of the flammable region increases rapidly with increasing leakage hole size. We also investigated the relation between the mass flow rate and the critical time when the hydrogen gas reaches the ceiling. The analysis of the monitoring points showed that the hydrogen gas dispersion behavior is isotropic and independent of the geometry. We found that the concentration of gas in an enclosed space is affected by both the leakage flow rate and amount of gas accumulated in the enclosure.

Preparation and Characterization of Poly(ethylene glycol) Based Pranlukast Solid Dispersion (친수성 Poly(ethylene glycol)을 이용한 프란루카스트 고체분산체의 제조 및 특성 분석)

  • Kim, Hyeong-Eun;Hwang, Jun-Seok;Cho, Sun-Hang;Kim, Young-Jin;Huh, Kang-Moo
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.41-46
    • /
    • 2012
  • In this study, poly(ethylene glycol) (PEG) was used as a hydrophilic polymer carrier to develop solid dispersion formulations for enhancing solubility and dissolution rate of pranlukast, one of poorly soluble drugs that has been broadly used for the treatment of asthma. PEG based solid dispersions with or without poloxamer were prepared by hot melting and solvent evaporation methods. The resultant solid dispersions were characterized by DSC and powder X-ray measurements, and their morphological properties were observed to be partially changed to amorphous state with reduced crystallinity. Dissolution and solubility tests showed that the solubility and dissolution rate of the solid dispersions were significantly enhanced. The solid dispersion formulation prepared by the hot melting method with a chemical composition of pranlukast:PEG:poloxamer = 1:5:1 demonstrated the most enhanced solubility and dissolution rate. The results suggest that the solid dispersions based on PEG and poloxamer are promising systems for the enhancement of solubility and bioavailability of pranlukast.

A Bayesian Comparison of Two Multivariate Normal Genralized Variances

  • Kim, Hea-Jung
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2002.05a
    • /
    • pp.73-78
    • /
    • 2002
  • In this paper we develop a method for constructing a Bayesian HPD (highest probability density) interval of a ratio of two multivariate normal generalized variances. The method gives a way of comparing two multivariate populations in terms of their dispersion or spread, because the generalized variance is a scalar measure of the overall multivariate scatter. Fully parametric frequentist approaches for the interval is intractable and thus a Bayesian HPD(highest probability densith) interval is pursued using a variant of weighted Monte Carlo (WMC) sampling based approach introduced by Chen and Shao(1999). Necessary theory involved in the method and computation is provided.

  • PDF

Stabilization and thermal conductivity measurement of MWCNT nanofluids by using the $3-{\omega}$ method (3-${\omega}$ 방법을 이용한 다중벽 탄소나노튜브 나노유체의 침전 안정성 및 열전도계수 측정에 관한 실험적 연구)

  • Oh, Dong-Wook;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2171-2176
    • /
    • 2007
  • The 3-omega (3-${\omega}$) method is utilized to measure the thermal conductivity of nanofluids. A metal line heater on a silicon nitride membrane bridge structure is microfabricated by a bulk silicon etching method. Localized measurement of the thermal conductivity within the nanofluids droplet is possible by the fabricated 3-${\omega}$ sensor. Time varying AC temperature amplitudes and thermal conductivities are measured to check the stability of the nanofluids containing multi-wall carbon nanotubes (MWCNTs). Stabilities of MWCNT nanofluids prepared with different chemical treatments are compared. Acid treated MWCNT showed best dispersion stability in water while MWCNTs dispersed in water with surfactants such as Gum Arabic and Sodium dodecyl benzene sulfate showed clear sign of gravity dependence.

  • PDF

Noise Loading Analysis using Volterra Kernels to Characterize Fiber Nonlinearities

  • Lee, Jong-Hyung
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.6
    • /
    • pp.246-250
    • /
    • 2012
  • We derive analytical expressions for the output spectral density and the noise power $P_{\beta}$ in noise loading analysis using Volterra kernels to characterize fiber nonlinearities. The bandwidth of the input noise source has little effect on $P_{\beta}$, but the power of the input noise source and the dispersion parameter value of the fiber have a significant effect on $P_{\beta}$. The Volterra method predicts ${\Delta}P_{\beta}[dB]$ = 30 dB/decade, which agrees very accurately over a wide range of fiber parameters compared with the numerical results by the split-step Fourier method. Therefore the Volterra method could be useful to predict the performance of a dense WDM system when we plan to upgrade fiber or increase signal power.

Measurement of the Ultrasonic Longitudinal Wave Velocities in Thin Plate (얇은 판재에서의 초음파 종파속도 측정)

  • 안봉영;이승석;이재옥
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2181-2188
    • /
    • 1991
  • The ultrasonic longitudinal wave velocities propagating normal to the surface in thin plates were measured with the amplitude spectrum method. The accuracy of the velocity measurement in o.5mm thick plates was 0.1%. In 4.239mm thick plate the phase velocities at the frequency band of 5MHz-15MHz were measured with the phase spectrum method and the amplitude spectrum method, and the velocity difference between two methods was less than 20m/s.

Effect of Surfactant on Synthesis of Colloidal Ag Nanoparticles (콜로이드 Ag 나노입자 합성시 계면활성제의 영향)

  • Lee Jong-Kook;Choi Nam-Kyu;Seo Dong-Seok
    • Korean Journal of Materials Research
    • /
    • v.15 no.5
    • /
    • pp.340-347
    • /
    • 2005
  • Silver nanoparticles were synthesized by chemical reduction method from aqueous silver nitrate solution ana hydrazine as a reduction agent. The morphology, particle size and shape were dependent on the mixing method, reaction temperature and time, molar ratio of hydrazine and silver nitrate, the kind of surfactant, and the addition of surfactant. The stability of the colloidal silver was achieved by the adsorption of surfactant molecules onto the particle. Silver nanoparticles have a characteristic absorption maximum at 430 nm under UV irradiation. It was found that the colloid was nanometer m size and formed very stable dispersion of silver. The Ag nanoparticles obtained showed the spherical shape with the size range of 10-30 nm.

Structural damping of composite materials using combined FE and lamb wave method

  • Ben, B.S.;Ben, B.A.;Kweon, S.H.;Yang, S.H.
    • Structural Engineering and Mechanics
    • /
    • v.51 no.6
    • /
    • pp.1047-1065
    • /
    • 2014
  • The article presents the methodology for finding material damping capacity at higher frequency and at relatively lower amplitudes. The Lamb wave dispersion theory and loss less finite element model is used to find the damping capacity of composite materials. The research has been focused on high frequency applications materials. The method was implemented on carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) plates. The Lamb waves were generated using ultrasonic pulse generator setup. The hybrid method has been explored in this article and the results have been compared with bandwidth methods available in the literature.

Analysis of Consolidation Behavior for Dredged Clay with Horizontal Drains (수평배수재가 설치된 준설매립 점토의 압밀 거동 해석)

  • 김수삼;장연수;박정순;오세웅
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.641-648
    • /
    • 2000
  • The horizontal drain method by installing drains horizontally in the ground is often used to expedite the dispersion of pore water and to increase the strength of dredged soft clay under the action of gravity or vacuum. In this study a numerical analysis method is developed to predict the consolidation process of soft ground with horizontal drains. One-dimensional self-weight consolidation theory is extended tn three-dimensions] theory with appropriate boundary conditions of horizontal drains. In the condition of pore water drainage by gravity, the behavior of the dredged clay with horizontal drains is compared with that of the clay without drains. The influence of design factors of drains on consolidation process is also analyzed.

  • PDF