• Title/Summary/Keyword: dispersion method

Search Result 1,631, Processing Time 0.03 seconds

Fire resistance evaluation of fiber-reinforced cement composites using cellulose nanocrystals

  • Lee, Hyung-Joo;Kim, Seung-Ki;Lee, Heon-Seok;Kang, Yong-Hak;Kim, Woosuk;Kang, Thomas H.K.
    • Advances in concrete construction
    • /
    • v.8 no.4
    • /
    • pp.311-320
    • /
    • 2019
  • In this study, the effect of cellulose nanocrystals (CNCs) on the fire resistance properties of fiber-reinforced cement composites was investigated. The main variables were CNCs content (0.4, 0.8 and 1.2vol.% compared with cement), steel fiber ratio, and exposure temperature (100, 200, 400, 600 and 800℃). The fire resistance properties, i.e., residual compressive strength, flexural strength, and porosity, were evaluated in relation with the exposure temperature of the specimens. The CNCs suspensions were prepared to composited dispersion method of magnetic stirring and ultra-sonication. CNCs are effective for increasing the compressive strength at high temperatures but CNCs do not seem to have a significant effect on flexural reinforcement. Porosity test result showed CNCs reduce the non-hydration area inside the cement and promote hydration.

Characterization of Silica/EVOH Hybrid Coating Materials Prepared by Sol-Gel Method

  • Kim, Seong-Woo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.288-296
    • /
    • 2009
  • In this study, the silica-based hybrid material with high barrier property was prepared by incorporating ethylene-vinyl alcohol (EVOH) copolymer, which has been utilized as packaging materials due to its superior gas permeation resistance, during sol-gel process. In preparation of this EVOH/$SiO_2$ hybrid coating materials, the (3-glycidoxy-propyl)-trimethoxysilane (GPTMS) as a silane coupling agent was employed to promote interfacial adhesion between organic and inorganic phases. As confirmed from FT-IR analysis, the physical interaction between two phases was improved due to the increased hydrogen bonding, resulting in homogeneous microstructure with dispersion of nano-sized silica particles. However, depending on the range of content of added silane coupling agent (GPTMS), micro-phase separated microstructure in the hybrid could be observed due to insufficient interfacial attraction or possibility of polymerization reaction of epoxide ring in GPTMS. The oxygen barrier property of the mono-layer coated BOPP (biaxially oriented polypropylene) film was examined for the hybrids containing various GPTMS contents. Consequently, it is revealed that GPTMS should be used in an optimum level of content to produce the high barrier EVOH/$SiO_2$ hybrid material with an improved optical transparency and homogeneous phase morphology.

Multiple Scattering of Elastic SH Waves by Randomly Distributed Ciecular Cylinders : Characterization of Dynamic Properties of FRC (랜덤하게 분포한 원형 실린더에 의한 SH 탄성파의 다중산란 : 섬유강화 복합재료의 동특성파악)

  • Kim, Jin-Yeon;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.11 no.4
    • /
    • pp.22-30
    • /
    • 1992
  • The propagation of coherent time-harmonic elastic SH waves in a medium with random distribution of cylindrical inclusions is studied for characterizing the dynamic elastic modulus and the attenuation property of fiber-reinforced composite materials. A multiple scattering theory using the single scattering coefficients in conjunction with the Lax's quasicrystalline approximation is derived and from which the dispersion relation for such medium is obtained. The pair-correlation functions between the cylinders which are needed to formulate the multiple scattering interaction between the cylinders are obtained by Monte Carlo simulation method.From the numerically calculated complex wavenumbers, the propagation speed of the average wave, the coherent attenuation coefficient and the effective shear modulus are presented as functions of frequency and area density.

  • PDF

Bit Error Rate Dependence on Amplifier Spacing in Long-Haul Optical Transmission System with Mid-Span Spectral Inversion (Mid-Span Spectral Inversion 기법을 채택한 장거리 광 전송 시스템에서의 증폭기 간격에 따른 비트 에러율)

  • Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.9 no.2
    • /
    • pp.109-120
    • /
    • 2005
  • In this paper, bit error rate (BER) characteristics, sensitivity and minimum allowable launching power are numerically investigated as a function of amplifier spacing that consisted of 1,200 km WDM systems with MSSI method. It is conformed that the sensitivity and minimum allowable launching power are gradually degraded as amplifier spacings are gradually expanded, but those are not largely affected by modulation format. The sensitivity of RZ transmission system is smaller than that of NRZ transmission system, but minimum allowable launching power of NRZ transmission system is smaller than that of RZ transmission system. And, it is confirmed that the best amplifier spacing in NRZ and RZ transmission system is less than 50 km, because the sensitivity and minimum allowable launching power are less affected by fiber dispersion, channel wavelength and pump light power.

  • PDF

A Study on Signal Feature Extraction of Partial Discharge Types Using Discrete Wavelet Transform Technique (이산웨이블렛 변환기법을 이용한 부분방전종류의 신호특징추출에 관한연구)

  • Park, Jae-Jun;Jeon, Byung-Hoon;Kim, Jin-Seong;Jeon, Hyun-Gu;Baek, Kwan-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.170-176
    • /
    • 2002
  • In this papers, we proposed the feature extraction method due to partial discharge type of transformers. For wavelet transform, Daubechie's filter is used, we can obtain wavelet coefficients which is used to extract feature of statistical parameters (maximum value, average value, dispersion, skewness, kurtosis) about acoustic emission signal generated from each partial discharge type. The defects which could occur in a transformer were simulated by using needle-plane electrode, IEC electrode and Void electrode. Also, these coefficients are used to identify signal of partial discharge type electrode fault in transformer. As a result, from compare of acoustic emission amplitude and acoustic average value, we are obtained results of IEC electrode> Void electrode> Needle-Plane electrode. otherwise, In case of skewness and kurtosis, we are obtained results of Needle-Plane electrode electrode> Void electrode> IEC electrode.

  • PDF

Study of Toxic Gas Removal Characteristics by Chemical Analysis of Essential Oil using SPME Method (SPME법을 이용한 식물정유 성분분석을 통한 유해가스 제거 특성연구)

  • 박영규
    • KSBB Journal
    • /
    • v.19 no.3
    • /
    • pp.231-235
    • /
    • 2004
  • This paper was investigated to clarify the possibility of ammonia gas removal by essential oil. First of all, the chemical analysis was peformed to analyze the composition of an essential oil by GC-MS. The monoterpenes in an essential oil react with ammonia by neutralization and their reaction mechanism was elucidated. Based on their chemical neutralized reaction, the removal efficiencies of ammonia gas were studied to derive the optimal conditions in the scrubber tower such as optimal temperature and pH. The experimental result shows that the removal efficiency of ammonia gas was achieved over 98 % by the misty aerosol dispersion of scrubber tower.

Dye-sensitized Solar Cells with Mesoporous TiO2 Film Manufactured by Spin Coating Methode (스핀코팅법에 의해 제조되어진 나노다공질 TiO2 전극막을 이용한 염료감응형 태양전지)

  • 구보근;이동윤;이원재;김현주;송재성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.9
    • /
    • pp.1001-1005
    • /
    • 2004
  • Rye-sensitized solar cell (DSSC) is a new class of solar cell, which consists of nanoporous TiO$_2$ electrode, dye-sensitizer, electrolyte, and counter electrode. Such cell is operated in sunlight via the principle of photosynthetic electrochemistry. In order to obtain the good dispersion of nano size TiO$_2$ particles In slurry, the pH of solvent, the sort and quantify of solvent additive and the quantity of surfactant were adjusted. As results, the lower the pH of solvent was the lower the viscosity of the slurry became. The addition of ethylene glycol and propylene glycol to dilute HNO$_3$ brought about the lowering of viscosity and the enhancement of stability in slurry. The addition of surfactant lowered the viscosity of slurry. It was possible to obtain the homogeneous and uniformly dispersed mesoporous TiO$_2$ film using the dilute HNO$_3$ solvent of pH 2 with the addition of ethylene glycol and neutral surfactant. DSSC was assembled with TiO$_2$ electrode and Pt electrode, and its photoelectric property was measured using the monochromatic wavelength in the rangee of 350∼700 nm.

OBSERV ATION OF MICRO-STRUCTURE AND OPTICAL PROPERTISE OF TITANIUM DIOXIDE THIN FILMS USING OPTICAL MMEHODS

  • Kim, S.Y.;Kim, H.J.
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.788-796
    • /
    • 1996
  • $TiO_2$ films prepared by RF magnetron sputtering, electron beam evaporation, ion assisted deposition (IAD) and sol-gel method are prepared on c-Si substrate and vitreous silica substrate respectively. From the transmission spectra of $TiO_2$ films on vitreous silica substrate in the spectral region from 190 nm to 900 nm, k($\lambda$) of $TiO_2$ is obtained. Using k($\lambda$) in the interband transition region the coefficients of the quantum mechanical dispersion relation of an amorphous $TiO_2$ and hence n($\lambda$) including the optically opaque region of above fundamental transition energy are obtained. The spectroscopic ellipsometry spectra of $TiO_2$ films in the spectral region of 1.5-5.0eV are model analyzed to get the film packing density variation versus i) substrate material, ii) film thickness and iii) film growth technique. The complex refractive index change of these $TiO_2$ films versus water condensation is also studied. Film micro-structures by SE modelling results are compared with those by atomic force microscopy images and X-ray diffraction data.

  • PDF

Synthesis of Core/shell Structured Ag/C Nano Particles and Properties on Annealing Conditions (전기선폭발법을 이용한 core/shell 구조 Ag/C 나노 입자의 제조 및 열처리조건에 따른 특성)

  • Jun, S.H.;Uhm, Y.R.;Rhee, C.K.
    • Journal of Powder Materials
    • /
    • v.17 no.4
    • /
    • pp.295-301
    • /
    • 2010
  • Multi shell graphite coated Ag nano particles with core/shell structure were successfully synthesized by pulsed wire evaporation (PWE) method. Ar and $CH_4$ (10 vol.%) gases were mixed in chamber, which played a role of carrier gas and reaction gas, respectively. Graphite layers on the surface of silver nano particles were coated indiscretely. However, the graphite layers are detached, when the particles are heated up to $250^{\circ}C$ in the air atmosphere. In contrast, the graphite coated layer was stable under Ar and $N_2$ atmosphere, though the core/shell structured particles were heated up to $800^{\circ}C$. The presence of graphite coated layer prevent agglomeration of nanoparticles during heat treatment. The dispersion stability of the carbon coated Ag nanoparticles was higher than those of pure Ag nanoparticles.

Fabrication of Core-Shell Structure of Ni/Au Layer on PMMA Micro-Ball for Flexible Electronics

  • Hong, Sung-Jei;Jeong, Gyu-Wan;Han, Jeong-In
    • Current Photovoltaic Research
    • /
    • v.4 no.4
    • /
    • pp.140-144
    • /
    • 2016
  • In this paper, core-shell structure of nickel/gold (Ni/Au) conductive layer on poly-methyl-methacrylate (PMMA) micro-ball was fabricated and its conduction property was investigated. Firstly, PMMA micro-ball was synthesized by using dispersion polymerization method. Size of the ball was $2.8{\mu}m$ within ${\pm}7%$ deviation, and appropriate elastic deformation of the PMMA micro-ball ranging from 31 to 39% was achieved under 3 kg pressure. Also, 200 nm thick Ni/Au conductive layer was fabricated on the PMMA micro-ball by uniformly depositing with electroless-plating. Adhesion of the conductive layer was optimized with help of surface pre-treatment, and the layer adhered without peeling-off despite of thermal expansion by collision with accelerated electrons. Composite paste containing core-shell structured particles well cured at low temperature of $130^{\circ}C$ while pressing the test chip onto the substrate to make electrical contact, and electrical resistance of the conductive layer showed stable behavior of about $6.0{\Omega}$. Thus, it was known that core-shell structured particle of the Ni/Au conductive layer on PMMA micro-ball was feasible to flexible electronics.