• Title/Summary/Keyword: dispersion method

Search Result 1,627, Processing Time 0.028 seconds

Table Flow Evaluation of CNT-Mixed Fiber Reinforced Cement Composite by Dispersion Method (분산방법에 따른 CNT를 혼입한 섬유보강 시멘트복합체의 유동성 평가)

  • Kim, Moon-Kyu;Kim, Gyu-Yong;Pyeon, Su-Jeong;Choi, Byung-Cheol;Park, Jun-Young;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.95-96
    • /
    • 2023
  • In this study, the table flow of fiber reinforced cement composites mixed with CNTs dispersed differently according to the dispersion method was evaluated. The mixture was composed of plain mixture according to the presence or absence of ultrasonic dispersion and PCE-based dispersants A and B of 0.5% and 1.0%, respectively, CNT was mixed with 0.03% of cement weight and fiber was mixed with 1.5% of total volume. As a result of the experiment, NC-A0.5 showed a fluidity similar to that of P without CNT. The fluidity of NC-A0.5 and P-N showed a similar tendency, which is considered to be due to the distribution of evenly dispersed CNT particles without agglomeration between cement particles due to the dispersant. NC-B0.5 showed a similar level of firmness to P-U, but after hitting 250 mm, B Agent seems to have a significant effect on liquidity improvement.Both NC-A1.0 and NC-B1.0 seem to have increased flow due to excessive dispersion.

  • PDF

The influence of the fluid flow velocity and direction on the wave dispersion in the initially inhomogeneously stressed hollow cylinder containing this fluid

  • Surkay D. Akbarov;Jamila N. Imamaliyeva;Reyhan S. Akbarli
    • Coupled systems mechanics
    • /
    • v.13 no.3
    • /
    • pp.247-275
    • /
    • 2024
  • The paper studies the influence of the fluid flow velocity and flow direction in the initial state on the dispersion of the axisymmetric waves propagating in the inhomogeneously pre-stressed hollow cylinder containing this fluid. The corresponding eigenvalue problem is formulated within the scope of the three-dimensional linearized theory of elastic waves in bodies with initial stresses, and with linearized Euler equations for the inviscid compressible fluid. The discrete-analytical solution method is employed, and analytical expressions of the sought values are derived from the solution to the corresponding field equations by employing the discrete-analytical method. The dispersion equation is obtained using these expressions and boundary and related compatibility conditions. Numerical results related to the action of the fluid flow velocity and flow direction on the influence of the inhomogeneous initial stresses on the dispersion curves in the zeroth and first modes are presented and discussed. As a result of the analyses of the numerical results, it is established how the fluid flow velocity and flow direction act on the magnitude of the influence of the initial inhomogeneous stresses on the wave propagation velocity in the cylinder containing the fluid.

Effect of Cross Phase Modulation on Channel Compensation in 320 Gbps Intensity Modulation / Direct Detection WDM Transmission Systems (320 Gbps 강도 변조 직접 검파 WDM 시스템의 채널 보상에서 상호 위상 변조의 영향)

  • 이성렬;김지웅;손성찬
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.5
    • /
    • pp.1134-1140
    • /
    • 2004
  • In this paper, we investigated the effect of cross phase modulation(XPM) on compensation for WDM channel distortion due to chromatic dispersion, self phase modulation and XPM as a function of fiber dispersion coefficient and modulation format in 320 Gbps WDM systems. The considered WDM transmission system is based on mid-span spectral inversion(MSSI) compensation method, which has highly nonlinear dispersion shifted fiber(HNL-DSF) as nonlinear medium of optical phase conjugator (OPC) in the mid-way of total transmission line. We confirmed that the maximum channel input power resulting 1 dB eye opening penalty is reduced due to XPM effect on channel distortion, even if MSSI method was applied to WDM system. But, we confirmed that the effect of XPM on channel distortion becomes decrease as fiber dispersion coefficient of WDM system becomes larger. Futhermore, we confirmed that NRZ is better than RZ as a modulation format for similarly compensating overall WDM channels in WDM system with large fiber dispersion coefficient in order to minimize the effect of the XPM on channel distortion.

Enhancement of Nitrendipine Bioavailability in Rats by its Solid Dispersion with $Hydroxypropyl-{\beta}-Cyclodextrin$ after Oral Administration (흰쥐에 경구 투여시 히드록시프로필-베타-시클로덱스트린과 니트렌디핀 고체분산에 의한 생체이용률 증가)

  • Yong, Chul-Soon
    • Journal of Pharmaceutical Investigation
    • /
    • v.27 no.4
    • /
    • pp.295-301
    • /
    • 1997
  • Nitrendipine, a slightly soluble calcium channel blocking agent forms a solid dispersion system with $hydroxypropyl-{\beta}-cyclodextrin$, which exhibits better dissolution characteristics than the uncomplexed drug. The dissolution rate of nitrendipine was markedly increased in solid dispersion system in pharmacopeial disintegration media at pH 1.2 and pH 6.8. Four different dosage forms of nitrendipine were administered to rats: (a) nitrendipine in the solution of PEG 400; (b) nitrendipine solid dispersion system with $hydroxypropyl-{\beta}-cyclodextrin$ in a molar ratio of 1:2 by solvent evaporation method and administered in capsule form; (c) physical mixture of nitrendipine with $hydroxypropyl-{\beta}-cyclodextrin$ in a molar ratio of 1:2 and administered in capsule form; (d) nitrendipine alone administered in capsule form. Relative bioavailability after the oral administration of various dosage forms to rats with a dose of 10 mg/kg equivalent to nitrendipine was compared with that of nitrendipine in the solution of PEG 400. The AUC of solid dispersion was significantly bigger than that of nitrendipine powder. $T_{max}$ of solid dispersion was significantly shorter and $C_{max}$ was higher than that of nitrendipine powder. These results indicate that the bioavailability of nitrendipine could be improved markedly by inclusion complexation. An interesting correlation also appears to exist between the in vitro dissolution data and the area under the plasma concentration-time curves.

  • PDF

Dispersion measurement technique based on a self-seeding laser oscillation of a Fabry-Perot laser (Fabry-Perot 레이저의 자기궤환 레이저 발진을 이용한 색분산 측정법)

  • 윤기홍;송재원;김현덕
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.2
    • /
    • pp.104-108
    • /
    • 2004
  • A simple dispersion measurement technique has been demonstrated by using a self-seeding laser oscillation of a Fabry-Perot laser through a closed loop. The optical pulses of different wavelengths emitted from the Fabry-Perot laser travel down an optical fiber and the group velocity difference between the pulses due to the chromatic dispersion of the optical fiber is measured through the self-seeding laser oscillation process. The dispersion parameter of the optical fiber is calculated from the measured group velocity difference. The performance of the proposed technique has been confirmed experimentally and the accuracy of dispersion parameter measurement was comparable to that of commercial instruments with expensive equipment and components. The repeatability of the proposed method was better than 0.5%.

Dispersion Analysis of the Waveguide Structures by Using the Compact 2D ADI-FDTD (Compact 2D ADI-FDTD를 이용한 도파관 구조의 분산특성 연구)

  • 어수지;천정남;박현식;김형동
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.10
    • /
    • pp.38-45
    • /
    • 2002
  • This paper presents the new Compact 2D ADI-FDTD(Alternating-Direction Implicit Finite-Difference Time-Domain) method, where the time step is no longer restricted by the numerical stability condition. This method is an accelerating algorithm for the conventional Compact 2D FDTD method. To validate this algorithm, we have analyzed the dispersion characteristics of the hollow rectangular waveguide and the shielded microstrip line. The results of the proposed method are very well agreed with those of both the conventional analytic method and the Compact 2D FDTD method. The CPU time for analysis of this method is very much reduced compared with the conventional Compact 2D FDTD method. The proposed method is valuable as a fast algorithm in the research of dispersion characteristics of the waveguide structures.

Determination of Mode Dispersion Curves of Surface Wave Using HWAW Method (HWAW(Harmonic Wavelet Analysis of Wave)방법을 이용한 표면파 모드 분산곡선의 결정)

  • Park, Hyung-Choon;Kim, Dong-Soo;Bang, Eun-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.12
    • /
    • pp.15-24
    • /
    • 2006
  • The evaluation of shear modulus is very important in various fields of civil engineering. Non-destructive seismic methods can be used to determine shear wave velocity ($V_s$) profile. Non-destructive seismic methods geneally consist of three steps: field testing, evaluation of dispersion curve, and determination of Vs profile by inversion process. Non-destructive seismic methods can be divided into two categories according to the number of receivers used for data reduction: two-channel tests and multi-channel tests. Two channel tests use apparent velocity dispersion curve and multi-channel tests use mode dispersion curves. Multi-channel tests using mode dispersion curve can reduce calculation time to determine soil profile and uncertainties in inversion process. So far, only multi-channel tests can determine mode dispersion curves but multi-channel test needs many receivers to determine reasonable mode dispersion curves. In this paper, HWAW (Harmonic Wavelet Analysis of Wave) method is applied to determine mode dispersion curves. HWAW method uses short test setup which consists of two receivers with a spacing of 1 to 3 m. Through numerical simulations and field application, it is shown that HWAW can determine resonable mode disperson curves.

Mechanical Properties of Fiber-reinforced Cement Composites according to a Multi-walled Carbon Nanotube Dispersion Method (다중벽 탄소나노튜브의 분산방법에 따른 섬유보강 시멘트복합체의 역학적 특성)

  • Kim, Moon-Kyu;Kim, Gyu-Yong;Pyeon, Su-Jeong;Choi, Byung-Cheol;Lee, Yae-Chan;Nam, Jeong-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.203-213
    • /
    • 2024
  • This study delves into the mechanical properties of fiber-reinforced cement composites(FRCC) concerning the dispersion method of multi-walled carbon nanotubes(MWCNTs). MWCNTs find utility in industrial applications, particularly in magnetic sensing and crack detection, owing to their diverse properties including heat resistance and chemical stability. However, current research endeavors are increasingly directed towards leveraging the electrical properties of MWCNTs for self-sensing and smart sensor development. Notably, achieving uniform dispersion of MWCNTs poses a challenge due to variations in researchers' skills and equipment, with excessive dispersion potentially leading to deterioration in mechanical performance. To address these challenges, this study employs ultrasonic dispersion for a defined duration along with PCE surfactant, known for its efficacy in dispersion. Test specimens of FRCC are prepared and subjected to strength, drawing, and direct tensile tests to evaluate their mechanical properties. Additionally, the influence of MWCNT dispersion efficiency on the enhancement of FRCC mechanical performance is scrutinized across different dispersion methods.

A Novel Generalized Nonlinear Dispersion Equation for Five-Layer Waveguides with Kerr-like Nonlinearity

  • Jeong, Jong-Sool;Song, Seok-Ho;Lee, El-Hang
    • ETRI Journal
    • /
    • v.18 no.2
    • /
    • pp.75-86
    • /
    • 1996
  • A new method is proposed for the analysis of optical properties of stationary transverse electirc (TE) nonlinear waves in the five-layer waveguide which consists of a linear guiding layer with two nonlinear bounding layers sandwiched between a semi-infinite clad and a substrate. By using the relation of the interface electric fields, we obtain the generalized form of nonlinear dispersion equations as an analytic and flexible form. In order to verify the dispersion equation, we apply the dispersion equation to the analysis of the symmetric five-layer waveguide. The nonlinear dispersion curves for several thicknesses of the nonlinear thin film is also presented.

  • PDF

A Study on the Prediction of the Remaining Life of the Barrel in Small Arms using Analyzing Dispersion (분산도 분석에 의한 총열 잔여수명 예측에 관한 연구)

  • Kim, Hyun-Jun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.139-145
    • /
    • 2009
  • This paper includes that there is the way to make the prediction of the remaining life of the barrel in small arms using analyzing dispersion. There are some ways to know the period to change the barrel such as the method of detecting the inner surface directly or inspecting the scratch using the optical sensor. However, it is a more easy way to check the dispersion for soldiers and the directors in a logistics command. Therefore, this study is conducted to focusing on the relation between firing round and dispersion. And the simple equation experimentally derives from pre-tests and analyses. Also, this equation is confirmed through the firing tests during the period of developing K11. In that sense, it can be easily applied to know the period of changing the barrel of small arms in the field army.