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ABSTRACT

A new method is proposed for the analysis
of optical properties of stationary transverse
electirc (TE) nonlinear waves in the five-
layer waveguide which consists of a linear
guiding layer with two nonlinear bounding
layers sandwiched between a semi-infinite
clad and a substrate. By using the rela-
tion of the interface electric fields, we ob-
tain the generalized form of nonlinear dis-
persion equations as an analytic and flexi-
ble form. In order to verify the dispersion
equation, we apply the dispersion equa-
tion to the analysis of the symmetric five-
layer waveguide. The nonlinear dispersion
curves for several thicknesses of the nonlin-
ear thin film is also presented.
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I. INTRODUCTION

Much progress has been made in the stud-
ies of nonlinear guided waves exhibiting ultra-
fast all-optical switching and self-routing char-
acteristics for future telecommunication net-
works [1], [2]. Special attention has been fo-
cused on the three-layer waveguide consisting
of a linear thin film bounded by two nonli-
near media because it can display several in-
teresting properties, such as self-bending, op-
tical bistability, and generation of spatial soli-
tary waves [3]-[12]. Recently, several differ-
ent structures have been studied by several au-
thors even though the mathematics are more
difficult than that of three-layer waveguide.
Sario et al. [13], for example, analyzed inho-
mogeneous four-layer waveguide with a non-
linear medium of finite thickness. Jeong et al.
[14] analyzed the five-layer nonlinear waveg-
uides having symmetric structures through the
dispersion equations obtained by adopting the
nonlinear transfer matrix. Lederer et al. [15]
suggested a tailored multilayer waveguide ex-
hibiting strong nonlinear effects.

In the present work, we propose a new
method which can make a complete analysis
on the optical properties of stationary trans-
verse electric (TE) nonlinear waves in the five-
layer waveguide which consists of a linear
guiding layer with two nonlinear bounding lay-
ers sandwiched between a semi-infinite clad
and a substrate. A generalized, analytic form
of a nonlinear dispersion equation is obtained
by using the relation of the electric fields at
the two interfaces between the upper nonli-
near layer and the clad, and between the lower

nonlinear layer and the substrate. To the best
of our knowledge, the equation has never been
reported before. And an analytical method
has not been proposed for the analysis of opti-
cal properties in the five-layer nonlinear wave-
guides having asymmetric structures. The dis-
persion equation shows a very flexible and
general expression because it can be applied
to the planar waveguides having a linear core
with nonlinear surrounding media and the five-
layer nonlinear waveguides having symmetric
or asymmetric structures. The five-layer non-
linear waveguide structures have merits that
the optical properties, such as optical bistabil-
ity and power distribution, can be controlled
by design of materials and the thicknesses of
the linear or the nonlinear thin films. In or-
der to verify the generalized dispersion equa-
tion, we apply the equation to the analysis of
the typical five-layer waveguide with symmet-
ric structure [14]. Through numerical calcula-
tion, it is found that the five-layer waveguide
generates three types of modes: (1) asymmet-
rical, (2) symmetrical, and (3) antisymmetri-
cal. We also present the optical properties as
follows: the relation between the mode index
and the interface fields, the nonlinear disper-
sion curves having bifurcation, the power dis-
tributions, the behavior of the interface fields
for the guided power, and the variation of the
nonlinear dispersion curves for several thick-
nesses of the nonlinear thin film.

II. THEORY

We consider the nonlinear waveguide con-
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figuration shown in Fig. 1. It consists of

five layers: the linear guiding layer, n f , of

thickness 2a between two nonlinear bounding

layers covered by semi-infinite clad, nc, and

substrate, ns, medium. The nonlinear layers

of thickness dnl1 and dnl2 , respectively, have

Kerr-like refractive indices of n2
i Dn2

i C˛ijEij2
.iD1; 2/where Ei is an amplitude of the elec-

tric field in medium i, ni, the linear refractive

index, and ˛i , the nonlinear coefficient of the

Kerr-like film. For simplicity, we consider the

self-focusing nonlinear medium (˛i > 0) and

neglect the absorption effect of the medium.

Fig. 1. Schematic drawing of the nonlinear waveguide

bounded by two nonlinear layers sandwiched by

a semi-infinite clad and a substrate.

Our analysis is restricted to TE waves propa-
gating along the z direction. The TE field may
be written as

Fi.x; z; t/D 1
2

Ei.x/exp[ j.!t�k0ˇz/]Cc:c: (1)

with the mode index of ˇ and the free-space

wave number of k0. The governing equation
for the electric field Ei in the ith nonlinear
medium is given by

d2

dx2 Ei.x/Ck2
0 [.n2

i �ˇ2 /C˛i j Ei .x/ j2 ]Ei.x/D0:

(2)

The first integration of (2) gives

1
k2

0

�
dEi .x/

dx

�2

C
h
.n2

i �ˇ2 /C ˛i

2
E2

i .x/
i

E2
i .x/DCnli :

.3/

At the interfaces x D b and x D �c, respec-
tively, the integration constant Cnli is given as
follows [16]:

CnliD .n2
i �n2

c;s /E
2
0iC

1
2
˛i E4

0i (4)

with the clad (substrate) refractive index nc

(ns) and the electric field E0i at the interfaces
x D b and x D �c, respectively. The elec-
tric field Enli .x/ of the ith nonlinear thin film
can be expressed by Jacobian elliptic function
[16]-[18]

Enli .x/D pi cn[k0qi.xCx0i / jmi]; (5)

where x0i is an integration constant indicat-
ing the location of the maximum field, pi D
qi
p

2mi=˛i , q2
i D .n2

i � ˇ2 /.1=2mi /, mi D�j0ij�.n2
i �ˇ2/

�
=2j0ij, and 02

i D .n2
i �ˇ2 /2C

2˛iCnli . From the relation of the tangential
components of the field and its derivative at the
interfaces x D b and x D�c, respectively, we
find the relation obtaining the integration con-
stant x0i as follows:

sn2.k0qix0i jmi /D .1C�i /� [.1C�i /
2�4mi�i]1=2

2mi

(6)
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with �iD .2mi�1/.ˇ2�n2
c;s /.ˇ

2�n2
i /
�1.

The electric fields in the waveguide, con-
sisting of five layers, are

Ec .x/D E01 exp.�k0
c.x�b// x>b

Enl1.x/D p1 cn[k0q1.x�bCx01 / jm1]

b> x> a

E f .x/D8>>>>>>>><>>>>>>>>:

A cos.k0
 f .x�a//CB sin.k0
 f .x�a//

for n f >ˇ

A cosh.k0
 f .x�a//CB sinh.k0
 f .x�a//

for n f <ˇ

a> x>�a

Enl2.x/D p2 cn[k0q2.xCc�x02 / jm2]

�a> x>�c

Es.x/D E02 exp.k0
s.xCc// �c> x

(7)

with 
 f D
q
jn2

f �ˇ2j, 
c D
p
ˇ2�n2

c , 
s Dp
ˇ�n2

s .

After appropriately manipulating the con-
servation constants, we can obtain the relation
between the interface electric fields E01 and
E02 in the five-layer waveguides with either
symmetric or asymmetric structure. At the in-
terface xDa, the boundary conditions provide

AD p1cn[k0q1.a�bCx01 / jm1]


 f BD�p1q1sn[k0q1.a�bCx01 / jm1]

� dn[k0q1.a�bCx01 / jm1]: (8)

At the interface xD�a, the field and its deriva-

tive are given by

Enl2.x/
ˇ̌

xD�aD8><>:A cos.2ak0
 f /�B sin.2ak0
 f / for n f >ˇ;

A cosh.2ak0
 f /�B sinh.2ak0
 f / for n f <ˇ;

(9)

d
dx

Enl2.x/
ˇ̌

xD�aD8>>>>>>>><>>>>>>>>:

k0
 f [A sin.2ak0
 f /CB cos.2ak0
 f /]

for n f >ˇ;

k0
 f [�A sinh.2ak0
 f /CB cosh.2ak0
 f /]

for n f <ˇ;

(10)

with (8). By substituting (9) and (10) into (3),
we obtain the conservation constant Cnl2 jxD�a

at the interface xD�a as follows:

Cnl2

ˇ̌
xD�aD8>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>:

jn2
f �ˇ2j.A sin �CB cos �/2

C.n2
2�ˇ2 /.A cos ��B sin �/2

C1
2
˛2.A cos ��B sin �/4

for n f >ˇ;

jn2
f �ˇ2j.A sinh ��B cosh �/2

C.n2
2�ˇ2 /.A cosh ��B sinh �/2

C1
2
˛2.A cosh ��B sinh �/4

for n f <ˇ;

(11)

with � D 2ak0
 f . And the conservation con-
stant Cnl2 jnD�c at the interface xD�c is given
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by

Cnl2

ˇ̌
xD�cD .n2

2�n2
s /E

2
02C

1
2
˛2 E4

02; (12)

as shown in (4). Since the conservation con-
stant describing the relation between the elec-
tric field and its derivative has the same value
at any point of the nonlinear thin film as shown
in (3), we can take the equation

Cnl2DCnl2

ˇ̌
xD�aDCnl2

ˇ̌
xD�c: (13)

With the help of (11)-(13), we can obtain the
relation of the E02 and Cnl2 jxD�a as follows:

˛2 E2
02D�.n2

2�n2
s /C

�
.n2

2�n2
s /

2C2˛2Cnl2

ˇ̌
xD�a

�1=2
:

.14/

(14) is utilized to calculate the interface fields

E01 and E02 corresponding to the mode con-

dition in the five-layer waveguide including

asymmetric two nonlinear bounding layers.

Applying the boundary conditions for the

fields and its derivatives at each interface, we

find the dispersion equations determining the

power-dependent mode. At the boundary xD
�a,

for n f >ˇ;

A cos ��B sin �D p2cn[k0q2.c�a�x02 /jm2]


 f .A sin �CB cos �/

D�p2q2 sn[k0q2.c�a�x02 / jm2]

� dn[k0q2.c�a�x02 /jm2] (15)

for n f <ˇ;

A cosh ��B sinh �D p2cn[k0q2.c�a�x02 /jm2]


 f .�A sinh �CB cosh �/

D�p2q2 sn[k0q2.c�a�x02 /jm2]

� dn[k0q2.c�a�x02 /jm2]: (16)

Setting u1 D k0q1.a � b C x01 / and u2 D
k0q2.c�a�x02 /, and with the help of (8), (15),
and (16), a generalized form of the dispersion
equation is given by

tan�D U1.ˇ; E01/�U2.ˇ; E02/

.�1/hCU1.ˇ; E01/U2.ˇ; E02/
; (17)

where

Ui .ˇ; E0i /D qi


 f

sn.ui jmi /dn.ui jmi /

cn.ui jmi /
(18)

with the parameter h indicating the integer 0

or 1. (17) is valid with h D 0 for n f > ˇ. In

the case of n f <ˇ, it can be readily shown that

(17) is valid with tan replaced by tanh and hD
1. The dispersion equation of (17) has been

obtained by using (14) describing the relation

between the electric fields of E01 and E02 at

the two interfaces between the upper nonlin-

ear layer and the clad, and between the lower

nonlinear layer and the substrate. And the term

of sn.ujm/dn.ujm/=cn.ujm/ in (18) is a very

flexible and general expression because it can

describe the linear layer, the nonlinear layer,

the linear media, and the nonlinear media. The

dispersion equation of (17), therefore, shows

a generalized form, which can be applied to

the planar waveguides having a linear core

with nonlinear surrounding media and the five-

layer nonlinear waveguides having symmetric

or asymmetric structures. In the case of ˛iD0

and ni D nc;s , Ui.ˇ; E0i / becomes qi=
 f due

to miD1 and x0i!1, which is obtained from

(6), and therefore (17) becomes the dispersion

equation for the three-layer linear waveguide.

And in the case of b; c ! 1, Ui.ˇ; E0i /
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approaches qi tanh.ui /=
i with mi ! 1, .b�
x01 / ! x001, and .c � x02/ ! x002, and (17)

is simplified to the dispersion equation of the

three-layer nonlinear waveguide presented by

Seaton et al. [3]. In this approach the power-

dependent mode indexˇ and the interface elec-

tric fields become the vital parameters of the

nonlinear dispersion equation. After fixing the

mode index ˇ, we can find the interface elec-

tric fields with (14) and (17) by using the shoot-

ing and matching technique. The pairs of ˇ and

the interface electric fields are then utilized to

plot the nonlinear dispersion curve which de-

picts the dependence of the mode indices on

the total guided power.

The total guided power Ptotal per unit
width is given by the power-dependent mode
index ˇ and the interface fields as follows:

Ptotal D 1
2
�0ˇ

Z 1
�1

E2.x/dx

D Pnl1C PlinC Pnl2

Cˇ�0

4k0

 
E2

01p
ˇ2�n2

c

C E2
02p

ˇ2�n2
s

!
(19)

where �0 is the free space admittance, Plin is
the fraction of the power propagating within
the linear guiding layer, and Pnl1 and Pnl2

are those within the upper and lower nonlin-
ear bounding layers, respectively. The guided
power Plin in the linear guiding layer can be
obtained in the analytical forms as follows:

Plin D �0ˇ

8k0
 f
[4Q0k0
 f aCQ1 sin.2�/CQ2 sin2 �]

for n f >ˇ;

Plin D �0ˇ

8k0
 f
[4Q1k0
 f aCQ0 sinh.2�/CQ2 sinh2 �]

for n f <ˇ; (20)

with Q0 D AA� C BB� , Q1 D AA� � BB� ,
Q2 D�2.AB� C BA� / where the constants A
and B are given by (8). In the upper and lower
nonlinear bounding layers, the nonlinear pow-
ers Pnli.iD1;2/ are also obtained by

Pnli D 1
2
�0ˇp2

i

Z dnli

0
cn2[k0qi.xCx0i / jmi]dx:

(21)

III. NUMERICAL RESULTS

We will investigate the verification of the

generalized dispersion equation by analyzing

the typical five-layer waveguide structure [14]

having two symmetric self-focusing nonlinear

layers. The employed parameters are as fol-

lows: n1 D n2 D 1:55, nc D ns D 1:50, n f D
1:570, ˛1 D ˛2D 6:38�10�12m2/V2 (MBBA

liquid crystal), � D 0:515 �m, a D 0:6 �m,

and dnl1 D dnl2 D 1:0 �m. The optical prop-

erties are presented as follows: the relation be-

tween the mode index and the interface fields,

the nonlinear dispersion curves having bifurca-

tion, the power distributions, and the behavior

of the interface fields for the guided power.

Figure 2 shows the relations between two

interface field intensities, E2
01 and E2

02, where

we used three different values of the mode in-

dex ˇ as a parameter: the solid curve for ˇD
1:567, the dashed curve for ˇ D 1:568, and

the dashed-and-dotted curve for ˇD1:569, re-
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spectively. The curves are similar to those of

polynomial equation of the fourth degree. As

shown in Fig. 2, the curves have three regions

in the real part of the electric fields, i.e., E2
02>

0. We, therefore, can predict that the five-layer

waveguides generate three types of modes.

Fig. 2. Relations between two interface field intensities,

E2
01 and E2

02, where the mode index ˇ is used as

a parameter: the solid curve for ˇ D 1:567, the

dashed curve for ˇD 1:568, and the dashed-and-

dotted curve for ˇD1:569, respectively.

Figure 3 illustrates the interface field in-

tensity corresponding to the mode condition in

the interface fields shown in Fig. 2. The figure

shows the dependence of the interface field in-

tensity E2
02 on the mode index for three types

of modes: the asymmetrical (the solid curve),

the symmetrical (the dashed curve), and the an-

tisymmetrical (the dashed-and-dotted curve),

respectively. The dashed vertical line indi-

cates the mode index corresponding to the re-

fractive index of the linear guiding layer. For

ˇ D 1:5656, the asymmetrical modes and the

symmetrical modes are bifurcated each other.

The turnaround point of E2
02 occurs at a value

higher than n f for the asymmetrical modes and

the symmetrical modes, but it occurs at lower

value for the antisymmetrical modes.

Fig. 3. Dependence of the interface field intensity E2
02

on the mode index for three types of modes: the

asymmetrical (the solid curve), the symmetrical

(the dashed curve), and the antisymmetrical (the

dashed-and-dotted curve), respectively.

Figure 4 shows the nonlinear dispersion

curves for three types of solutions: the solid

curve for the asymmetrical modes, the dashed

curve for the symmetrical modes, and the

dashed-and-dotted curve for the antisymmet-

rical modes, respectively. It is interesting

to note that the asymmetric branch bifurcates

from the symmetric one, as was in case of

the three-layer nonlinear waveguide [3]. And
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the dispersion curve of the antisymmetrical

modes shows that the mode indices increase

almost linearly with the guided power. It has

been shown theoretically that the symmetrical

mode and the asymmetrical nonlinear mode on

the negatively sloped branch of the dispersion

curve is unstable in the three-layer nonlinear

waveguides [9]. But the stability of three types

of modes generated in the five-layer waveg-

uides should be checked using the propagat-

ing beam method or the mathematical stability

technique [9], [10].

Fig. 4. Nonlinear dispersion curves for three types

of solutions: the solid curve for the asymmetri-

cal modes, the dashed curve for the symmetrical

modes, and the dashed-and-dotted curve for the

antisymmetrical modes, respectively.

Figure 5 shows the field distributions at
some points on the dispersion curves of Fig. 4.
For the asymmetrical mode shown in Fig. 5(a),
until the guided power reaches the threshold

value of Pth � 52:96 mW/mm, the field is
essentially confined within the linear guiding
layer and it gradually moves to either one of
two nonlinear layers as the mode index in-
creases. Figure 5(b) shows for the symmetri-
cal modes that until the power reaches Pth �
75:88 mW/mm, the field remains flat in the
linear layer and then the field maximum sud-
denly splits into two peaks, both of which exist
within the nonlinear layers. The antisymmet-
rical modes plotted in Fig. 5(c), however, the
field maximum of the mode cannot exist within
the linear layer even at the mode index lower
than the refractive index of the linear layer.

Figure 6 illustrates the variation of the inte-
gration constant x02 as a function of the mode
index for three types of modes: the asymmet-
rical (the solid curve), the symmetrical (the
dashed curve), and the antisymmetrical (the
dashed-and-dotted curve), respectively. For
x02<1:0 �m the field maximum locates with-
in the nonlinear bounding layer, but for x02 >

1:0 �m the field maximum exists within the
linear guiding layer. It is interesting to note
that for the asymmetrical modes and the an-
tisymmetrical modes, the field maximum lo-
cates within the nonlinear region even in case
of ˇ<n f .

Figure 7 depicts the optical bistable prop-
erties of the power distributions between the
fraction of the power in the linear guiding
layer, Plin , and that of the power in the non-
linear bounding layers, Pnl , with respect to
the total guided power, Ptotal , for three types
of modes. Most of the power propagates in
the linear film up to the threshold power of
Pth �52:96 mW/mm for asymmetrical modes
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Fig. 5. Field distributions at some points on the dispersion curves of Fig. 4: (a) the asymmetrical modes, (b) the symmet-

rical modes, and (c) the antisymmetrical modes, respectively.

and up to Pth � 75:88 mW/mm for symmet-

Fig. 6. Variation of the integration constant x02 as a func-

tion of the mode index for three types of modes:

the asymmetrical (the solid curve), the symmet-

rical (the dashed curve), and the antisymmetrical

(the dashed-and-dotted curve), respectively.

rical modes. With further increase beyond
the threshold power, the propagating power is
transferred from the linear guiding layer into
the nonlinear bounding layers because the re-
fractive indices of the nonlinear layers increase
with the power. It should be noted that these
bistable curves are similar to the bistable char-
acteristics of a nonlinear Fabry-Perot etalon.
Figure 8 shows the relations between the inter-
face field intensity and the guided power, and
it is shown that the interface field intensity of
the asymmetrical modes and the symmetrical
modes has the bistable behaviors for the guided
power.

Now, we consider the optical nonlinear

properties for the variation of the nonlinear

film thickness with the fixed thickness of the

linear film. Figure 9 shows the variation of the

nonlinear dispersion curves for several thick-

nesses of the nonlinear thin film with a D
0:5�m and dnl2D0�m. The solid curve gives
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Fig. 7. Power distributions between the fraction of the

power in the linear guiding layer, Plin , and that of

the power in the nonlinear bounding layers, Pnl ,

for three types of modes.

the optical bistability of the mode indices for

the nonlinear film thickness of dnl1 D1:0 �m,

the dashed curve for dnl1 D 0:4 �m, and the

dashed-and-dotted curve for dnl1D0:3�m, re-

spectively. It has been found that the optical

bistabilities are exhibited and the critical pow-

ers for the optical bistabilityare increased with

the decrease of the thickness of the nonlinear

thin film, as shown in Fig. 9.

IV. CONCLUSIONS

In conclusion, we have proposed a novel,

generalized method to analyze the optical

properties of the nonlinear guided waves

Fig. 8. Optical relations between the interface field in-

tensity and the guided power for three types of

modes.

in the nonlinear waveguides, which consist

of five layers. The new form of nonlinear

dispersion equation, which is based on the

relation between the interface fields, has been

obtained in analytic form. The dispersion

equation shows a very flexible and general

expression because it can be applied to the

planar waveguides having a linear core with

nonlinear surrounding media and the five-

layer nonlinear waveguides having symmetric

or asymmetric structures. In order to verify

the dispersion equation, we have analyzed

the optical properties of the typical five-layer

waveguide with symmetric structure. We have

learned that the five-layer waveguide gener-

ates three types of modes: the asymmetrical,

the symmetrical, and the antisymmetrical

modes. It has been found that the nonlinear



ETRI Journal, volume 18, number 2, July 1996 Jong-Sool Jeong et al. 85

Fig. 9. Variation of nonlinear dispersion curves for sev-

eral thicknesses of the nonlinear thin film: the

solid curve gives the nonlinear mode indices for

the nonlinear film thickness of dnl1D1:0 �m, the

dashed curve, dnl1D0:4 �m, and the dashed-and-

dotted curve, dnl1D0:3 �m, respectively.

dispersion curve is bifurcated into the asym-

metric branch and the symmetric branch,

as was in case of the three-layer nonlinear

waveguide. The dependence of the field

maximum location upon the mode index was

also presented. And the power distributions

and the interface electric fields display optical

bistable behaviors, which are similar to those

of a nonlinear Fabry-Perot etalon. We have

also found that the optical bistabilities are ex-

hibited and the critical powers for the optical

bistability are increased with the decrease of

the thickness of the nonlinear thin film.

We employed the parameters of MBBA

liquid crystal as a nonlinear medium. How-

ever, the liquid crystal exhibits a large loss and

very slow nonlinearity, due to its thermal na-

ture. Hence, it is not suitable for all-optical

applications. Therefore, we consider another

several nonlinear media, such as single crys-

tal P-toluene sulphonate (PTS), heterocyclic

ladder polymer, ion-exchanged CdS1�XSeX-

doped glass, Sn-doped silica glass by ion im-

plantation, and Gold ion implanted glass.
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