• Title/Summary/Keyword: dispersion equations

Search Result 215, Processing Time 0.025 seconds

Parametric study of the wave dispersion in the hydro-elastic system consisting of an inhomogeneously prestressed hollow cylinder containing compressible inviscid fluid

  • Surkay D. Akbarov;Gurbaneli J. Veliyev
    • Coupled systems mechanics
    • /
    • v.12 no.1
    • /
    • pp.41-68
    • /
    • 2023
  • The present work is concerned with the study of the influence of inhomogeneous initial stresses in a hollow cylinder containing a compressible inviscid fluid on the propagation of axisymmetric longitudinal waves propagating in this cylinder. The study is carried out using the so-called three-dimensional linearized theory of elastic waves in bodies with initial stresses to describe the motion of the cylinder and using the linearized Euler equations to describe the flow of the compressible inviscid fluid. It is assumed that the inhomogeneous initial stresses in the cylinder are caused by the internal pressure of the fluid. To solve the corresponding eigenvalue problem, the discrete-analytic solution method is applied and the corresponding dispersion equation is obtained, which is solved numerically, after which the corresponding dispersion curves are constructed and analyzed. To obtain these dispersion curves, parameters characterizing the magnitude of the internal pressure, the ratio of the sound velocities in the cylinder material and in the fluid, and the ratio of the material densities of the fluid and the cylinder are introduced. Based on these parameters, the influence of the inhomogeneous initial stresses in the cylinder on the dispersion of the above-mentioned waves in the considered hydro-elastic system is investigated. Moreover, based on these results, appropriate conclusions about this influence are drawn. In particular, it is found that the character of the influence depends on the wavelength. Accordingly, the inhomogeneous initial stresses before (after) a certain value of the wavelength lead to a decrease (increase) of the wave propagation velocity in the zeroth and first modes.

Response of anisotropic porous layered media with uncertain soil parameters to shear body-and Love-waves

  • Sadouki, Amina;Harichane, Zamila;Elachachi, Sidi Mohammed;Erken, Ayfer
    • Earthquakes and Structures
    • /
    • v.14 no.4
    • /
    • pp.313-322
    • /
    • 2018
  • The present study is dedicated to investigate the SH body-as well as Love-waves propagation effects in porous media with uncertain porosity and permeability. A unified formulation of the governing equations for one-dimensional (1-D) wave propagation in anisotropic porous layered media is presented deterministically. The uncertainties around the above two cited parameters are taken into account by random fields with the help of Monte Carlo Simulations (MCS). Random samples of the porosity and the permeability are generated according to the normal and lognormal distribution functions, respectively, with a mean value and a coefficient of variation for each one of the two parameters. After performing several thousands of samples, the mathematical expectation (mean) of the solution of the wave propagation equations in terms of amplification functions for SH waves and in terms of dispersion equation for Love-waves are obtained. The limits of the Love wave velocity in a porous soil layer overlaying a homogeneous half-space are obtained where it is found that random variations of porosity change the zeros of the wave equation. Also, the increase of uncertainties in the porosity (high coefficient of variation) decreases the mean amplification function amplitudes and shifts the fundamental frequencies. However, no effects are observed on both Love wave dispersion and amplification function for random variations of permeability. Lastly, the present approach is applied to a case study in the Adapazari town basin so that to estimate ground motion accelerations lacked in the fast-growing during the main shock of the damaging 1999 Kocaeli earthquake.

Determination of Stream Reaeration Coefficient Using Modified Gas Tracer Method (Modified Gas Tracer Method 를 이용한 하천 재폭기계수의 산정)

  • 조영준
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.4
    • /
    • pp.57-65
    • /
    • 1999
  • A modified gas tracer method was used to obtain reaeration coefficient from an artificial channel and a reach of Bokha stream, Ichon city. Propane was used as the tracer gas and Rhodamine-B dye as a dispersion and dulution tracer. Concentrations of propane in water sample were measured using a gas chromatograph and concentrationsof dye using UV-Spectrophotometer. To compare measured values with predicted values,commonly used 14 equations were selected . Results of this study suggested that the modified gas tracer method is a potentially useful procedure for th edetermination of reaeration cofficients. However, estimated reaeration coefficients from predictive equations were significantly different from that of this study. Therefore, when using predictive equations, careful selection of equation with consideration for hydraulic characteristics such as flow depth and average velocity, or use of newly derived predictive equation which is adequate for questioned stream would be needed.

  • PDF

Analysis of propagation characteristics of elastic waves in heterogeneous nanobeams employing a new two-step porosity-dependent homogenization scheme

  • Ebrahimi, Farzad;Dabbagh, Ali;Rabczuk, Timon;Tornabene, Francesco
    • Advances in nano research
    • /
    • v.7 no.2
    • /
    • pp.135-143
    • /
    • 2019
  • The important effect of porosity on the mechanical behaviors of a continua makes it necessary to account for such an effect while analyzing a structure. motivated by this fact, a new two-step porosity dependent homogenization scheme is presented in this article to investigate the wave propagation responses of functionally graded (FG) porous nanobeams. In the introduced homogenization method, which is a modified form of the power-law model, the effects of porosity distributions are considered. Based on Hamilton's principle, the Navier equations are developed using the Euler-Bernoulli beam model. Thereafter, the constitutive equations are obtained employing the nonlocal elasticity theory of Eringen. Next, the governing equations are solved in order to reach the wave frequency. Once the validity of presented methodology is proved, a set of parametric studies are adapted to put emphasis on the role of each variant on the wave dispersion behaviors of porous FG nanobeams.

An Esitimation of Lognitudinal Dispersion Coefficient in Natural Stram Using Hydraulic Model (수리모형을 이용한 자연하천에서 종확산계수 추정)

  • Yun, Se-Ui;Han, Geon-Yeon;Han, Jeong-Seok;Kim, Jeong-Su
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.4
    • /
    • pp.407-417
    • /
    • 2000
  • To estimate the longitudinal dispersion coefficient at the downstream of Jungrang-River, the undistorted 1/20 scale hydraulic model was used in this study. Experiments were conducted for dry season discharge, and Rhodamine B was used as a tracer. The relationship curve between concentration and conductivity of Rhodamine B was otained by laboratory test, and the conductivity which was measured in hydraulic model was converted to concentration using this curve. The longitudinal dispersion coefficient was calculated using the relationship between the peak concentration and the time to peak concentration. The results of this study were compared with the calculated values by the empirical equations for the longitudinal dispersion coefficient and with the field data. The results of comparison show that Parker's equation underestimates, and Liu'g equation and Iwasa and Aya's one overestimate, and McQuivey and Keefer's equations, Fischer's one, Magazine's one, and Seo and Cheong's one predict relatively well. The measured data sets were relatively close to the observed ones in natural river. The longitudinal dispersion coefficient at the downstream of Jungrang-River was estimated $10\textrm{m}^2/s$.

  • PDF

Analytical Comparison of Time-Dependent Mild-Slope Equations (시간의존 완경사방정식의 이론적 비교)

  • Lee, Chang-Hoon;James T. Kirby
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.4
    • /
    • pp.389-396
    • /
    • 1994
  • We analyze existing time-dependent mild-slope equations, which were developed by Smith and Sprinks (1975) (or, equivalently, Radder and Dingemans (1985)) and Kubo et al. (1992), in terms of the dispersion relation and energy transport. One-dimensionally in the horizontal direction, we compare the modulation of wave amplitudes for the time-dependent mild-slope equations against the linear Scrodinger equation. In view of the dispersion relation and modulation of wave amplitudes, Smith and Sprinks' model is more accurate in shallower water (kh$\leq$0.2$\pi$) and satisfies the linear Scrodinger equation in very shallow water (kh>0.2$\pi$) and satisfies the linear Scrodinger equation at a point of intermediate water depth (kh=0.3$\pi$). In view of the energy transport, Kubo et al.'s model is more accurate but yields singular solutions at some higher frequency range.

  • PDF

Computational analysis of pollutant dispersion in urban street canyons with tree planting influenced by building roof shapes

  • Bouarbi, Lakhdar;Abed, Bouabdellah;Bouzit, Mohamed
    • Wind and Structures
    • /
    • v.23 no.6
    • /
    • pp.505-521
    • /
    • 2016
  • The objective of this study is to investigate numerically the effect of building roof shaps on wind flow and pollutant dispersion in a street canyon with one row of trees of pore volume, $P_{vol}=96%$. A three-dimensional computational fluid dynamics (CFD) model is used to evaluate air flow and pollutant dispersion within an urban street canyon using Reynolds-averaged Navier-Stokes (RANS) equations and the Explicit Algebraic Reynolds Stress Models (EARSM) based on k-${\varepsilon}$ turbulence model to close the equation system. The numerical model is performed with ANSYS-CFX code. Vehicle emissions were simulated as double line sources along the street. The numerical model was validated by the wind tunnel experiment results. Having established this, the wind flow and pollutant dispersion in urban street canyons (with six roof shapes buildings) are simulated. The numerical simulation results agree reasonably with the wind tunnel data. The results obtained in this work, indicate that the flow in 3D domain is more complicated; this complexity is increased with the presence of trees and variability of the roof shapes. The results also indicated that the largest pollutant concentration level for two walls (leeward and windward wall) is observed with the upwind wedge-shaped roof. But the smallest pollutant concentration level is observed with the dome roof-shaped.

Wave dispersion analysis of rotating heterogeneous nanobeams in thermal environment

  • Ebrahimi, Farzad;Haghi, Parisa
    • Advances in nano research
    • /
    • v.6 no.1
    • /
    • pp.21-37
    • /
    • 2018
  • In the present article, wave dispersion behavior of a temperature-dependent functionally graded (FG) nanobeam undergoing rotation subjected to thermal loading is investigated according to nonlocal strain gradient theory, in which the stress numerates for both nonlocal stress field and the strain gradient stress field. The small size effects are taken into account by using the nonlocal strain gradient theory which contains two scale parameters. Mori-Tanaka distribution model is considered to express the gradually variation of material properties across the thickness. The governing equations are derived as a function of axial force due to centrifugal stiffening and displacements by applying Hamilton's principle according to Euler-Bernoulli beam theory. By applying an analytical solution, the dispersion relations of rotating FG nanobeam are obtained by solving an eigenvalue problem. Obviously, numerical results indicate that various parameters such as angular velocity, gradient index, temperature change, wave number and nonlocality parameter have significant influences on the wave characteristics of rotating FG nanobeams. Hence, the results of this research can provide useful information for the next generation studies and accurate deigns of nanomachines including nanoscale molecular bearings and nanogears, etc.

A nonlocal strain gradient theory for scale-dependent wave dispersion analysis of rotating nanobeams considering physical field effects

  • Ebrahimi, Farzad;Haghi, Parisa
    • Coupled systems mechanics
    • /
    • v.7 no.4
    • /
    • pp.373-393
    • /
    • 2018
  • This paper is concerned with the wave propagation behavior of rotating functionally graded temperature-dependent nanoscale beams subjected to thermal loading based on nonlocal strain gradient stress field. Uniform, linear and nonlinear temperature distributions across the thickness are investigated. Thermo-elastic properties of FG beam change gradually according to the Mori-Tanaka distribution model in the spatial coordinate. The nanobeam is modeled via a higher-order shear deformable refined beam theory which has a trigonometric shear stress function. The governing equations are derived by Hamilton's principle as a function of axial force due to centrifugal stiffening and displacement. By applying an analytical solution and solving an eigenvalue problem, the dispersion relations of rotating FG nanobeam are obtained. Numerical results illustrate that various parameters including temperature change, angular velocity, nonlocality parameter, wave number and gradient index have significant effect on the wave dispersion characteristics of the understudy nanobeam. The outcome of this study can provide beneficial information for the next generation researches and exact design of nano-machines including nanoscale molecular bearings and nanogears, etc.

Analysis of Airflow Pattern and Particle Dispersion in Enclosed Environment Using Traditional CFD and Lattice Boltzmann Methods

  • Inoguchi, Tomo;Ito, Kazuhide
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.2
    • /
    • pp.87-97
    • /
    • 2012
  • The indoor environments in high-rise buildings are generally well enclosed by defined boundary conditions. Here, a numerical simulation method based on the Lattice Boltzmann method (LBM), which aims to model and simulate the turbulent flow accurately in an enclosed environment, and its comparison with traditional computational fluid dynamics (CFD) results, are presented in this paper. CFD has become a powerful tool for predicting and evaluating enclosed airflows with the rapid advance in computer capacity and speed, and various types of CFD turbulence modeling and its application and validation have been reported. The LBM is a relatively new method; it involves solving of the discrete Boltzmann equation to simulate the fluid flow with a collision model instead of solving Navier-Stokes equations. In this study, the LBM-based scheme of flow pattern and particle dispersion analyses are validated using the benchmark test case of two- and three-dimensional and isothermal conditions (IEA/Annex 20 case); the prediction accuracy and advantages are also discussed by comparison with the results of CFD.