• Title/Summary/Keyword: dispersion behavior

Search Result 491, Processing Time 0.028 seconds

Fabrication of Core-Shell Structure of Ni/Au Layer on PMMA Micro-Ball for Flexible Electronics

  • Hong, Sung-Jei;Jeong, Gyu-Wan;Han, Jeong-In
    • Current Photovoltaic Research
    • /
    • v.4 no.4
    • /
    • pp.140-144
    • /
    • 2016
  • In this paper, core-shell structure of nickel/gold (Ni/Au) conductive layer on poly-methyl-methacrylate (PMMA) micro-ball was fabricated and its conduction property was investigated. Firstly, PMMA micro-ball was synthesized by using dispersion polymerization method. Size of the ball was $2.8{\mu}m$ within ${\pm}7%$ deviation, and appropriate elastic deformation of the PMMA micro-ball ranging from 31 to 39% was achieved under 3 kg pressure. Also, 200 nm thick Ni/Au conductive layer was fabricated on the PMMA micro-ball by uniformly depositing with electroless-plating. Adhesion of the conductive layer was optimized with help of surface pre-treatment, and the layer adhered without peeling-off despite of thermal expansion by collision with accelerated electrons. Composite paste containing core-shell structured particles well cured at low temperature of $130^{\circ}C$ while pressing the test chip onto the substrate to make electrical contact, and electrical resistance of the conductive layer showed stable behavior of about $6.0{\Omega}$. Thus, it was known that core-shell structured particle of the Ni/Au conductive layer on PMMA micro-ball was feasible to flexible electronics.

A Visualization of the Spray from Small Liquid-rocket Engine Injector by Dual-mode Phase Doppler Anemometry (이중모드 위상도플러 속도계측기법에 의한 소형 액체로켓엔진 인젝터 분무의 가시화)

  • Jung, Hun;Kim, Jeong-Soo;Bae, Dae-Seok;Kwon, Oh-Boong
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.4
    • /
    • pp.60-65
    • /
    • 2010
  • A focus is given to the breakup behavior of spray droplets issuing from a nonimpinging-type injector. The analysis has been carried out experimentally by means of the dual-mode phase Doppler anemometry (DPDA). Spray characteristic parameters in terms of axial velocity, mean diameter, velocity fluctuation, and span (width of the size distribution) of droplets are measured down the geometric axis of a nozzle orifice and on the plane normal to the spray stream with the injection pressure variations. As the injection pressure increases, the velocity and its fluctuation become higher, whereas the droplet sizes get smaller. It is also shown that the magnitudes of those parameters are smoothed out by dispersion when the droplets move downstream as well as outwardly. The atomization process is significantly influenced by the injection pressure rather than the traveling distance in the experimental condition presented.

Dispersity and Electro-Conductivity of PU Grafted MWCNT/PU Composite via Simple Blending Method (블렌딩을 이용한 폴리우레탄 그라프트 다중벽 탄소나노튜브/폴리우레탄 복합체의 전기 전도성 및 분산 특성)

  • Yun, Sung-Jin;Im, Hyun-Gu;Kim, Joo-Heon
    • Applied Chemistry for Engineering
    • /
    • v.21 no.5
    • /
    • pp.500-504
    • /
    • 2010
  • The PU-g-MWNTs/PU film was synthesized by simple blending method to fabricate composites which have excellent mechanical and electrical properties. PU-g-MWNTs based composite revealed much enhanced dispersity than pristine MWNTs composite because of interfacial interaction related with interfacial compatibility between polymer matrix and PU on the MWNTs surface. The electro-conductivity of composite was measured as a function of PU-g-MWNTs concentration. The results were correlated with percolation threshold theory. As a result, the critical concentration and exponent of electro-conductivity behavior was equal to 0.78 wt% and 0.945.

Synthesis of Carbonyl Iron-reinforced Polystyrene by High Energy Ball Milling

  • Nguyen, Hong-Hai;Nguyen, Minh-Thuyet;Kim, Won Joo;Kim, Jin-Chun;Kim, Young-Soo;Kim, Young-Hyuk;Nazarenko, Olga B.
    • Journal of Powder Materials
    • /
    • v.23 no.4
    • /
    • pp.276-281
    • /
    • 2016
  • Carbonyl iron (CI) is successfully incorporated as an additive into a polystyrene (PS) matrix via a highenergy ball milling method, under an n-hexane medium with volume fractions between 1% and 5% for electromagnetic interference shielding applications by the combination of magnetic CI and an insulating PS matrix. The morphology and the dispersion of CI are investigated by field emission scanning electron microscopy, which indicates a uniform distribution of CI in the PS matrix after 2 h of milling. The thermal behavior results indicate no significant degradation of the PS when there is a slight increase in the onset temperature with the addition of CI powder, when compared to the as-received PS pellet. After milling, there are no interactions between the CI and the PS matrix, as confirmed by Fourier transformed infrared spectroscopy. In this study, the milled CI-PS powder is extruded to make filaments, and can have potential applications in the 3-D printing industry.

Pullout Performance of Reinforcing Fiber Embedded in Nano Materials Cement Mortar with Nano Clay Contents (나노클레이 첨가량에 따른 나노재료 시멘트 모르타르에 정착된 보강섬유의 인발성능)

  • Oh, Ri-On;Park, Chan Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.3
    • /
    • pp.113-121
    • /
    • 2013
  • Recently, it has been studied for the application of nano-materials in the concrete. Applied a small amount of nano-materials can achieve the goal of high strength, high performance and high durability. The small addition of nano clay improves strength, thermal stability, and durability of concrete because of the excellent dispersion. The present study has investigated the effectiveness, when varying with the contents of nano clay, influencing the pull-out behavior of macro synthetic fibers in nano materials cement mortar. Pullout tests conducted in accordance with the Japan Concrete Institute (JCI) SF-8 standard for fiber-reinforced concrete test methods were used to evaluate the pullout performance of the different nano clay. Nano clay was added to the 0, 1, 2, 3, 4 and 5 % of cement weight. The experimental results demonstrated that the addition of nano clay led to improve the pull-out properties as of the load-displacement curve in the precracked and debonded zone. Also, the compressive strength, flexural strength and pullout performance and of Mix No. 1 and No. 2 increased up to the point when nano clay used increased by 2 and 3 % contents, respectively, but decreased when the exceeded 3 and 4 %, respectively. It was proved by verifying increase of the scratching phenomenon in macro synthetic fiber surface through the microstructure analysis on the surface of macro synthetic fiber.

SWR as Tool for Determination of the Surface Magnetic Anisotropy Energy Constant

  • Maksymowicz, L.J.;Lubecka, M.;Jablonski, R.
    • Journal of Magnetics
    • /
    • v.3 no.4
    • /
    • pp.105-111
    • /
    • 1998
  • The low energy excitations of spin waves (SWR) in thin films can be used for determination of the surface anisotropy constant and the nonhomogeneities of magnetization in the close-to-surface layer. The dispersion relation in SWR is sensitive on the geometry of experiment. We report on temperature dependence of surface magnetic anisotropy energy constant in magnetic semiconductor thin films of$ CdCr_{2-2x}In_{2x}Se_4$ at spin glass state. Samples were deposited by rf sputtering technique on Corning glass substrate in controlled temperature conditions. Coexistence of the infinite ferromagnetic network (IFN) and finite spin slusters (FSC) in spin glass state (SG) is know phenomena. Some behavior typical for long range magnetic ordering is expected in samples at SG state. The spin wave resonance experiment (microwave spectrometer at X-band) with excited surface modes was applied to describe the energy state of surface spins. We determined the surface magnetic anisotropy energy constant versus temperature using the surface inhomogeneities model of magnetic thin films. It was found that two components contribute to the surface magnetic anisotropy energy. One originates from the exchange interaction term due to the lack of translation symmetry for surface spin as well as from the originates from the exchange interaction term due to the lack of translation symmetry for surface spin as well as from the stray field of the surface roughness. The second one comes from the demagnetizing field of close-to surface layer with grad M. Both term linearly decrease when temperature is increased from 5 to 123 K, but dominant contribution is from the first component.

  • PDF

Chemical Modification of Carbon Nanotubes and Preparation of Polystyrene/Carbon Nanotubes Composites

  • Ham, Hyeong-Taek;Koo, Chong-Min;Kim, Sang-Ouk;Park, Yeong-Suk;Chung, In-Jae
    • Macromolecular Research
    • /
    • v.12 no.4
    • /
    • pp.384-390
    • /
    • 2004
  • Single-walled carbon nanotubes (SWNTs) have been chemically modified through the formation of carboxylic acid functionalities or by grafting octadecylamine and polystyrene onto them. We purified SWNTs with nitric acid to remove some remaining catalysts and amorphous carbon materials. After purification, we broke the carbon nanotubes and shortened their lengths by using a 3:1 mixture of concentrated sulfuric acid and nitric acid. During these purification and cutting processes, carboxylic acid units formed at the open ends of the SWNTs. Octa-decylamine and amino-terminated polystyrene were grafted onto the cut SWNTs by condensation reactions between the amine and carboxylic acid units. The cut SWNTs did not disperse in organic solvents, but the octadecylamine-grafted and polystyrene-grafted SWNTs dispersed well in dichloromethane and aromatic solvents (e.g., benzene, toluene). Composites were prepared by mixing polystyrene with the octadecylamine-grafted or polystyrene-grafted SWNTs. Each composite had a higher dynamic storage modulus than that of a pristine polystyrene. The composites exhibited enhanced storage moduli, complex viscosities, and unusual non-terminal behavior when compared with a monodisperse polystyrene matrix because of the good dispersion of carbon nanotubes in the polystyrene matrix.

Electronic Structure and Bonding in the Ternary Silicide YNiSi3

  • Sung, Gi-Hong;Kang, Dae-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.325-333
    • /
    • 2003
  • An analysis of the electronic structure and bonding in the ternary silicide YNiSi₃is made, using extended Huckel tight-binding calculations. The YNiSi₃structure consists of Ni-capped Si₂dimer layers and Si zigzag chains. Significant bonding interactions are present between the silicon atoms in the structure. The oxidation state formalism of $(Y^{3+})(Ni^0)(Si^3)^{3-}$ for YNiSi₃constitutes a good starting point to describe its electronic structure. Si atoms receive electrons from the most electropositive Y in YNiSi₃, and Ni 3d and Si 3p states dominate below the Fermi level. There is an interesting electron balance between the two Si and Ni sublattices. Since the ${\pi}^*$ orbitals in the Si chain and the Ni d and s block levels are almost completely occupied, the charge balance for YNiSi₃can be rewritten as $(Y^{3+})(Ni^{2-})(Si^{2-})(Si-Si)^+$, making the Si₂layers oxidized. These results suggest that the Si zigzag chain contains single bonds and the Si₂double layer possesses single bonds within a dimer with a partial double bond character. Strong Si-Si and Ni-Si bonding interactions are important for giving stability to the structure, while essentially no metal-metal bonding exists at all. The 2D metallic behavior of this compound is due to the Si-Si interaction leading to dispersion of the several Si₂π bands crossing the Fermi level in the plane perpendicular to the crystallographic b axis.

Observation on the Microstructures of Cu-TiB2 Composites with Wear Behavior (Cu-TiB2 복합재료의 마모거동에 따른 미세조직 관찰)

  • Lee, Tae-Woo;Kang, Kae-Myung
    • Korean Journal of Materials Research
    • /
    • v.16 no.8
    • /
    • pp.511-515
    • /
    • 2006
  • The dispersion hardened $Cu-TiB_2$ composites are a promising candidate for applications as electrical contact materials. The $Cu-TiB_2$ composites for electrical contact materials can reduce material cost and resource consumption caused by wear, due to their good mechanical and electrical properties. In this study, we investigated the wear phenomenon for $Cu-TiB_2$ composites fabricated with hot extrusion, by varying particle sizes and volume fractions of $TiB_2$. The wear tests were performed under the dry sliding condition with a fixed total sliding distance of 40 m. The contact loads at a constant speed of 3.5 Hz were 20, 40, 60, and 80 N. The friction coefficients and wear losses were measured during wear tests. Worn surfaces and wear debris after wear tests were investigated using the scanning electron microscope and the optical microscope. The microstructures of interface between Cu matrix and $TiB_2$ particle before and after wear tests were studied by the transmission electron microscope.

Synthesis and Characterization Of Green- and Yellow-Emitting Zinc Silicate Thin Films Doped with Manganese

  • Cho, Yeon Ki;Kim, Joo Han
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.546-546
    • /
    • 2013
  • Zinc silicate ($Zn_2SiO_4$) has been identified as a suitable host material for a wide variety of luminescent activators, such as transition metal and rare earth elements. In particular, manganese-activated $Zn_2SiO_4$ exhibits highly efficient photoluminescenceand cathodoluminescence, which allows this material to be used in fluorescent lamps and display applications. In this study, we investigated the green and yellow luminescence from Mn-doped $Zn_2SiO_4$ thin films that were synthesized using radio frequency magnetron sputtering followed by annealing at $600{\sim}1,200^{\circ}C$ The refractive index of the $Zn_2SiO_4$: Mn films showed normal dispersion behavior. It was found that the $Zn_2SiO_4$: Mn films annealed at $800^{\circ}C$ ossessed a mixture of alpha and beta phases. The obtained photoluminescence spectrum consisted of two emission bands centered at 525 nm in the green range and 574 nm in the yellow range. The green luminescence originates from the divalent Mn ions in alpha phase of $Zn_2SiO_4$, while the yellow luminescence comes from the divalent Mn ions in beta phase. The films annealed at and above $900^{\circ}C$ xhibited only the alpha phase. The broad PL excitation band was observed ranging from 220 to 300 nm with a maximum at around 243 nm.

  • PDF