Dispersity and Electro-Conductivity of PU Grafted MWCNT/PU Composite via Simple Blending Method

블렌딩을 이용한 폴리우레탄 그라프트 다중벽 탄소나노튜브/폴리우레탄 복합체의 전기 전도성 및 분산 특성

  • Yun, Sung-Jin (Department of Chemical Engineering, Chungang University) ;
  • Im, Hyun-Gu (Department of Chemical Engineering, Chungang University) ;
  • Kim, Joo-Heon (Department of Chemical Engineering, Chungang University)
  • 윤성진 (중앙대학교 공과대학 화학신소재공학부) ;
  • 임현구 (중앙대학교 공과대학 화학신소재공학부) ;
  • 김주헌 (중앙대학교 공과대학 화학신소재공학부)
  • Received : 2010.03.26
  • Accepted : 2010.08.02
  • Published : 2010.10.10

Abstract

The PU-g-MWNTs/PU film was synthesized by simple blending method to fabricate composites which have excellent mechanical and electrical properties. PU-g-MWNTs based composite revealed much enhanced dispersity than pristine MWNTs composite because of interfacial interaction related with interfacial compatibility between polymer matrix and PU on the MWNTs surface. The electro-conductivity of composite was measured as a function of PU-g-MWNTs concentration. The results were correlated with percolation threshold theory. As a result, the critical concentration and exponent of electro-conductivity behavior was equal to 0.78 wt% and 0.945.

다중벽 탄소 나노튜브(Carbon nanotube, MWNTs)의 우수한 전기적 기계적 특성과 폴리우레탄의 우수한 기계적 물성을 이용하여 우수한 전기 전도성 복합체를 제조하기 위하여 말단기가 polyurethane로 기능화 된 탄소 나노튜브(PU-g-MWNTs)를 제조하였다. 말단기에 형성된 폴리우레탄과 고분자 메트릭스 간의 상용성으로 인한 계면 접합력으로 인해 기능화된 CNT 복합체 기능화 되지 않은 CNT에 비해 우수한 분산성을 나타내었다. PU-g-MWNT/PU 복합체의 전기 전도성을 PU-g-MWNT의 농도에 따라 측정하였으며 percolation threshold 이론에 의해 해석하였다. 그 결과 PU-g-MWNT/PU 복합체의 전기전도성은 임계농도 0.78 wt%과 임계지수 0.945를 가짐을 확인하였다.

Keywords

References

  1. J. Xiong, Z. Zheng, X. Qin, M. Li, H. Li, and X. Wang, Carbon, 44, 2701 (2006). https://doi.org/10.1016/j.carbon.2006.04.005
  2. T. Uchida and S. Kumar, J. Appl. Polym. Sci., 98, 985 (2005). https://doi.org/10.1002/app.22203
  3. V. Datsyuka, M. Kalyvaa, K. Papagelisb, J. Partheniosa, D. Tasisb, A. Siokoua, I. Kallitsisa, and C. Galiotisa, Carbon, 46, 833 (2008). https://doi.org/10.1016/j.carbon.2008.02.012
  4. S. Berber, Y. K. Kwon, and D. Tomanek, Phys. Rev. Lett., 84, 4613 (2000). https://doi.org/10.1103/PhysRevLett.84.4613
  5. Y. Gao, Y. Wang, J. Shi, H. Bai, and B. Song, Polym. Test., 27, 179 (2008). https://doi.org/10.1016/j.polymertesting.2007.09.012
  6. S. M. Yuen, C. C. M. Ma, Y. Y. Lin, and H. C. Kuan, Comp. Sci. Technol., 67, 2564 (2007). https://doi.org/10.1016/j.compscitech.2006.12.006
  7. J. Ryszkowska, Mater. Charact., 60, 1127 (2009). https://doi.org/10.1016/j.matchar.2009.01.021
  8. J. H. Ko, J. C. Kim, and J. H. Chang, Polymer (Korea), 33, 333 (2009).
  9. H. G. Im, H. M. Kim, and J. H. Kim, Polymer (Korea), 32, 340 (2008).
  10. H. G. Im, H. S. Lee, and J. H. Kim, Polymer (Korea), 31, 543 (2007).
  11. T. C. Wen, Y. L. Du, and M. Digar, Euro. Polym. J., 38, 1039 (2002). https://doi.org/10.1016/S0014-3057(01)00257-9
  12. H. Koerner, W. Liu, M. Alexander, P. Mirau, H. Dowty, and R. A. Vaia, Polym., 46, 4405 (2005). https://doi.org/10.1016/j.polymer.2005.02.025
  13. Y. L. Du and T. C. Wen, Mater. Chem. Phys., 71, 62 (2001). https://doi.org/10.1016/S0254-0584(01)00271-1
  14. S. M. Kim, N. S. Kwak, Y. K. Yang, B. K. Yim, B. Y. Park, and T. S. Hwang, Polymer (Korea), 29, 253 (2005).
  15. J. Y. Kwon and H. D. Kim, J. Polym. Sci: Part A: Polymer Chemistry, 43, 3973 (2005). https://doi.org/10.1002/pola.20897
  16. S. D. Lee, O. J. Kwon, B. C. Chun, J. W. Cho, and J. S. Park, Fib. Polym., 10, 71 (2009). https://doi.org/10.1007/s12221-009-0071-3
  17. S. J. Yun, H. G Im, and J. H. Kim, Polymer (Korea), 34, 97 (2010).
  18. L. Hu, D. S. Hecht, and Gruner, Nano Lett., 4, 2513 (2004). https://doi.org/10.1021/nl048435y
  19. R. Zhang, A. Dowden, H. Deng, M. Baxendale, and T. Peijs, Compos. Sci. Technol., 69, 1499 (2009). https://doi.org/10.1016/j.compscitech.2008.11.039
  20. C. A. Martin, J. K. W. Sandler, M. S. P. Shaffer, M. K. Schwarz, W. Bauhofer, K. Schulte, and A. H. Windle, Comp. Sci. Technol., 64, 2309 (2004). https://doi.org/10.1016/j.compscitech.2004.01.025
  21. W. Bauhofer and J. Z. Kovacs, Comp. Sci. Technol., 69, 1486 (2009). https://doi.org/10.1016/j.compscitech.2008.06.018