• Title/Summary/Keyword: dispersed phases

Search Result 102, Processing Time 0.023 seconds

Image Capturing of Dispersed Phases in DCHXs by Electric Tomography

  • Chun, Won-Gee;Kim, Min-Chan;Lee, Heon-Ju;Kang, Yong-Heack;Kwon, Hyok-Bo
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.2
    • /
    • pp.69-78
    • /
    • 2001
  • This paper introduces the physical phenomena involved in Direct Contact Heat Exchangers (DCHXs) and also investigates the possibility of applying of EIT(Electrical Impedance Tomography) technique for capturing the images of dispersed phases as they stream through a stagnant body of water. A number of cases are studied where two dimensional cross-sectional static images are given for fictitious and actual masses present in a column of water(saline solution). In most direct contact liquid-liquid heat exchangers, oil or hydrocarbon with a density different(lighter or heavier) from water is normally used as dispersed working fluid. The main difficulty that arises with this arrangement lies in the elucidation of complicated flow field where the dispersed phase fluid tends to change its shape and size constantly during its journey through the other phase(water). This paper presents a number of results with different types of dispersed phases that are immiscible with water. The EIT technique has been employed in this context to test its applicability in capturing the dynamic images of dispersed phases. It shows static images of dispersed phases where dynamic images could be obtained by simply extending the algorithms and strategies employed in the present analysis.

  • PDF

Second-Moment Closure Modelling of Particle-Laden Homogeneous Turbulent Shear Flows (고체입자가 부상된 균질 난류 전단유동의 2차-모멘트 모형화)

  • Shin, Jong-Keun;Seo, Jeong-Sik;Han, Seong-Ho;Choi, Young-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.1 s.256
    • /
    • pp.29-39
    • /
    • 2007
  • A second-moment closure is applied to the prediction of a homogeneous turbulent shear flow laden with mono-size particles. The closure is curried out based on a 'two-fluid' methodology in which both carrier and dispersed phases are considered in the Eulerian frame. To reduce the number of coupled differential equations to be solved, Reynolds stress transport equations and algebraic stress models are judiciously combined to obtain the Reynolds stress of carrier and dispersed phases in the mean momentum equation. That is, the Reynolds stress components for carrier and dispersed phases are solved by modelled transport equations, but the fluid-particle velocity covariance tensors are treated by the algebraic models. The present predictions for all the components of Reynolds stresses are compared to the DNS data. Reasonable agreements are observed in all the components, and the effects of the coupling of carrier and dispersed phases are properly captured in every aspects.

A Study on the Improvement of Dynamic Characteristics of Spindle-Work System in Lathe - Focused on the Bolt Juint between Headstock and Bed - (선반주축계의 동특성 향상에 관한 연구 -주축대와 베드의 보울트 결합을 중심으로-)

  • 신용호;박태원;홍동표;정인성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.1
    • /
    • pp.1-7
    • /
    • 1988
  • Prediction performances by Einstein's equation of diffusivity, Peskin's model, Three-Equation model, Four-Equation model and Algebraic Stress Model, have been compared by analyzing twophase (air-solid) turbulent jet flow. Turbulent kinetic energy equation of dispersed phase was solved to investigate effects of turbulent kinetic energy on turbulent diffusivity. Turbulent kinetic energy dissipation rate of particles has been considered by solving turbulent kinetic energy dissipation rate equation of dispersed phase and applying it to turbulent diffusivity of dispersed phase. Results show that turbulent diffusivity of dispersed phase can be expressed by turbulent kinetic energy ratio between phases and prediction of turbulent kinetic energy was improved by considering turbulent kinetic energy dissipation rate of dispersed phase for modelling turbulent diffusivity. This investigation also show that Algebraic Stress Model is the most promising method in analyzing gas-solid two phases turbulent flow.

NUMERICAL STUDY OF CHIP COOLING ENHANCEMENT WITH EVAPORATING MIST FLOW (분무 증발을 이용한 칩 냉각 향상에 대한 수치적 연구)

  • Roh, S.E.;Kim, D.;Son, G.
    • Journal of computational fluids engineering
    • /
    • v.18 no.2
    • /
    • pp.9-16
    • /
    • 2013
  • The heat transfer enhancement of heat sink with mist flow is studied numerically by solving the conservation equations for mass, momentum and energy in the continuous and dispersed phases. A Lagrangian method is used for tracing dispersed water droplets in the heat sink and an Eulerian species transport model for air and steam mixture. The continuous and dispersed phases are interacted with the drag and evaporation source terms. The computed results show that addition of evaporating mist droplets enhances the cooling performance of heat sink significantly.

Image Reconstruction of Dispersed Phases in DCHXs

  • Wongee Chun;Kim, Min-Chan;Lee, Heon-Ju;Lee, Yoon-Joon;Kang, Yong-Heack;Kim, Hyung-Taek
    • Journal of Energy Engineering
    • /
    • v.10 no.2
    • /
    • pp.83-89
    • /
    • 2001
  • This paper studies the possibility of applying the EIT(Electrical Impedance Tomography) technique for investigating the formation and movement of dispersed phase droplets as they stream through a Direct Contact Heat Exchanger(DCHX). In most direct contact liquid-liquid heat exchangers, oil or hydro-carbon with a density different (lighter or heavier) from water is normally used as dispersed working fluid. The main difficulty that arises with arrangement lies in the extraction of performance parameters and visualization of dispersed phase fluids if required. In order to delve into these problems, this paper introduces a number of cases regarding the operation and principle of DCHXs and investigates the possibility of applying the EIT technique whose results are given for several examples.

  • PDF

A Study on the Thermal Stability of Duplex High Mn-Steel Structure (고 망간강 2상 혼합조직의 열적 안정성에 관한 연구)

  • Wey, Myeong Yong
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.5 no.1
    • /
    • pp.13-22
    • /
    • 1992
  • The thermal stability of duplex high Mn-steel structure have been investigated using 15%Mn~1.0~2.4%C steels which are composed of ${\gamma}$-and ${\theta}$-phases in the range of temperature from 900 to $1100^{\circ}C$, and time from 50 to 300h. The results are as follows ; 1) The grain growth in single-phase region proceeds by grain boundary migration and the relation between mean radius $\bar{r}$ and annealing time t is described as follows ; $\bar{r}^2-{\bar{r}_0}^2=k_0{\cdot}t$ 2) The grain growth of duplex, (${\gamma}+{\theta}$), strucrure is slower than that single phase because the chemical composition of ${\gamma}$-and ${\theta}$-phases differs esch others. 3) The grain of (${\gamma}+{\theta}$) duplex structure grow slowly in a mode of Ostwald ripening. Because grain boundaries of ${\gamma}$-phase migrate under a restriction of pinning by ${\theta}$-phases. 4) In the duplex structures. the dispersed structures change to the dual-structures, as the volume fraction of the dispersed second-phase increase. Consequently, the growth-law, which is controlled by boundary-diffusion change to that of the volume diffusion-mechanism.

  • PDF

An Investigation of Dispersion Behavior of Y2O3 Ceramic Particles in Hypo, Eutectic and Hyper Binary Al-Cu Cast Alloys (아공정, 공정, 과공정 조성의 Al-Cu 주조합금에서의 Y2O3 분말의 분산 거동에 대한 연구)

  • Park, J.J.;Kim, G.H.;Hong, S.M.;Lee, S.H.;Lee, M.K.;Rhee, C.K.
    • Journal of Powder Materials
    • /
    • v.14 no.2 s.61
    • /
    • pp.123-126
    • /
    • 2007
  • In this work, the dispersion behavior of $Y_2O_3$ particles in binary aluminum (Al)-copper (Cu) cast alloy was investigated with respect to Cu contents of 20 (hypoeutertic), 33 (eutectic) and 40 (hypereutectic) wt.%. In cases of hypo and hypereutectic compositions, SEM images revealed that the primary Al and ${\theta}$ phases were grown up at the beginning, respectively, and thereafter the eutectic phase was solidified. In addition, it was found that some of $Y_2O_3$ particles can be dispersed into the primary Al phase, but none of them are is observed inside the primary 6 phase. This different dispersion behavior of $Y_2O_3$ particles is probably due to the difference in the val- ues of specific gravity between $Y_2O_3$ particles and primary phases. At eutectic composition, $Y_2O_3$ particles were well dispersed in the matrix since there is few primary phases acting as an impediment site for particle dispersion during solidification. Based on the experimental results, it is concluded that $Y_2O_3$ particles are mostly dispersed into the eutectic phase in binary Al-Cu alloy system.

Preparation and Characterization of P-Type Thermoelectric $\beta-FeSi_2$ Containing Dispersed Si Phase(l)-Microstructural Evolution with Processing Conditions- (Si 분산 조직의 p형 $\beta-FeSi_2$ 열전재의 제조 및 특성(l)-제조 조건에 따른 미세조직의 변화-)

  • Min, Byeong-Gyu;Kim, Il-Ho;Lee, Dong-Hui
    • Korean Journal of Materials Research
    • /
    • v.8 no.7
    • /
    • pp.584-590
    • /
    • 1998
  • The microstructures of finely distributed Si-phases in $\beta$-$FeSi_2$ thermoelectric matrix, were produced by heat-treating the melt-cast ingots of single $\alpha$-$Fe_2Si_5$ phase at 730~85$0^{\circ}C$ for 4~20 hours, or by resistance-hot-pressing the mechanically alloyed powders ordinarily consisting of $\varepsilon$-FeSi and Si phases at 760~85$0^{\circ}C$ for 10 minutes of composition. $(Fe_{0.98}Mn_{0.02})_xSi_2(x{\leq$}1) The size and interspacing of dispersed Si-phases were able to control within a range of 0.05~0.27$\mu\textrm{m}$ and 0.2~0.6$\mu\textrm{m}$ by variations of heat treatment temperature and sintering temperature as well as the composition. respectively. The dispersion of Si- phases was expected to be effective for the reduction of thermal conductivity responsible for the increment of thermoelectric figure of merit.

  • PDF

Study on the numerical models of turbulent dispersion of solid particles in a two-phase turbulent jet flow (이상난류제트 유동에서 고체입자 난류확산의 수치모델에 관한 연구)

  • 양선규;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.1
    • /
    • pp.1-18
    • /
    • 1987
  • Prediction performances by Einstein's equation of diffusivity, Peskin's model, Three-Equation model, Four-Equation model and Algebraic Stress Model, have been compared by analyzing twophase (air-solid) turbulent jet flow. Turbulent kinetic energy equation of dispersed phase was solved to investigate effects of turbulent kinetic energy on turbulent diffusivity. Turbulent kinetic energy dissipation rate of particles has been considered by solving turbulent kinetic energy dissipation rate equation of dispesed phase and applying it to turbulent diffusivity of dispersed phase. Results show that turbulent diffusivity of dispersed phase can be expressed by turbulent kinetic energy ratio between phases and prediction of turbulent kinetic energy was improved by considering turbulent kinetic energy dissipation rate of dispersed phase for modelling turbulent diffusivity. This investigation also show that Algebraic Stress Model is the most promising method in analyzing gas-solid two phaes turbulent flow.

Effects of Molecular Weight of PC on Mechanical Properties of PC/ABS Blends using High-Shear Rate Processing

  • Lee, Eun Ju;Park, Hee Jung;Kim, Se Mi;Lee, Seung Goo;Lee, Kee Yoon
    • Korean Chemical Engineering Research
    • /
    • v.56 no.3
    • /
    • pp.343-348
    • /
    • 2018
  • Each of the two polycarbonates (PC) of different molecular weights was blended with acrylonitrile-butadiene-styrene (ABS) under high-shear rate processing to afford PC/ABS. Sizes of ABS dispersed phases and mechanical properties of PC/ABS blends were investigated and high-shear rate processing of PC/ABS was carried out by changing screw speed and processing time. Prepared specimens were examined by scanning electron microscope (SEM) to observe morphology changes. Sizes of ABS dispersed phases in PC/ABS blends were observed to decrease gradually as screw speeds increased. Tensile strengths and elongations of specimens were investigated by universal testing method (UTM) to study the influence of molecular weight of PC exerting on PC/ABS blends. As a result, PC1/ABS blends (PC1: higher molecular weight PC) exhibited more strengthened properties than PC2/ABS (PC2: lower molecular weight PC). The tensile strength of PC1/ABS showed an increasing tendency when the screw speed increased, and the elongation did not show a significant decrease, but increased slightly with increasing shear time at a constant screw speed of 1000 rpm.