In this paper a hierarchical stereo matching algorithm based on feature extraction is proposed. The boundary (edge) as feature point in an image is first obtained by segmenting an image into red, green, blue and white regions. With the obtained boundary information, disparities are extracted by matching window on the image boundary, and the initial disparity map is generated when assigned the same disparity to neighbor pixels. The final disparity map is created with the initial disparity. The regions with the same initial disparity are classified into the regions with the same color and we search the disparity again in each region with the same color by changing block size and search range. The experiment results are evaluated on the Middlebury data set and it show that the proposed algorithm performed better than a phase based algorithm in the sense that only about 14% of the disparities for the entire image are inaccurate in the final disparity map. Furthermore, it was verified that the boundary of each region with the same disparity was clearly distinguished.
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권9호
/
pp.4375-4388
/
2018
To solve the problem of transmission errors in stereoscopic images, this paper proposes a novel error concealment (EC) method using superpixel segmentation and adaptive disparity selection (SSADS). Our algorithm consists of two steps. The first step is disparity estimation for each pixel in a reference image. In this step, the numbers of superpixel segmentation labels of stereoscopic images are used as a new constraint for disparity matching to reduce the effect of mismatching. The second step is disparity selection for a lost block. In this step, a strategy based on boundary smoothness is proposed to adaptively select the optimal disparity which is used for error concealment. Experimental results demonstrate that compared with other methods, the proposed method has significant advantages in both objective and subjective quality assessment.
Journal of information and communication convergence engineering
/
제9권1호
/
pp.83-88
/
2011
Abstract. Image segmentation is always a challenging task in computer vision as well as in pattern recognition. Nowadays, this method has great importance in the field of stereo vision. The disparity information extracting from the binocular image pairs has essential relevance in the fields like Stereoscopic (3D) Imaging Systems, Virtual Reality and 3D Graphics. The term 'disparity' represents the horizontal shift between left camera image and right camera image. Till now, many methods are proposed to visualize or estimate the disparity. In this paper, we present a new technique to visualize the horizontal disparity between two stereo images based on image segmentation method. The process of comparing left camera image with right camera image is popularly known as 'Stereo-Matching'. This method is used in the field of stereo vision for many years and it has large contribution in generating depth and disparity maps. Correlation based stereo-matching are used most of the times to visualize the disparity. Although, for few stereo image pairs it is easy to estimate the horizontal disparity but in case of some other stereo images it becomes quite difficult to distinguish the disparity. Therefore, in order to visualize the horizontal disparity between any stereo image pairs in more robust way, a novel stereo-matching algorithm is proposed which is named as "Quadtree Segmentation of Pixels Disparity Estimation (QSPDE)".
대한원격탐사학회 1999년도 Proceedings of International Symposium on Remote Sensing
/
pp.304-309
/
1999
In this paper, we presents a new disparity map refinement algorithm using statistical characteristics of disparity map and edge information. The proposed algorithm generate a refined disparity map using disparity maps which are obtained from area and feature-based Stereo Matching by selecting a disparity value of edge point based on the statistics of both disparity maps. Experimental results on aerial stereo image show the better results than conventional fusion algorithms in the disparity error. This algorithm can be applied to the reconstruction of building image from the high resolution remote sensing data.
본 논문에서는 스테레오 영상으로부터 중간 시점 영상을 생성하는 알고리즘을 제안한다. 사람이 3차원 영상을 자연스럽게 인지하기 위해서는 다시점의 영상이 필요하다. 이를 위해 많은 수의 카메라를 이용하면 시스템이 복잡하고 커지며 전송량도 문제가 된다. 따라서 송신측에서 스테레오 영상만을 촬영하여 송신하고, 수신측에서 여러 장의 중간 시점 영상을 생성하는 방법을 생각할 수 있다. 제안하는 방법은 스테레오 영상간의 시차에 따른 화소의 차로 표현되는 시차공간영상을 생성한다. 시차공간영상을 이용하여 최적의 시차 경로를 탐색하여 시차 지도를 만든다. 최종적으로 정합이 이루어지지 않은 가려짐 영역을 처리한 후에 중간 시점의 영상을 생성한다. 제안한 방법으로 생성한 영상은 30 dB PSNR 이상의 결과를 얻었다.
This paper presents an algorithm capable of detecting free space for the autonomous vehicle navigation. The algorithm consists of two main steps: 1) estimation of longitudinal profile of road, 2) detection of free space. The estimation of longitudinal profile of road is detection of v-line in v-disparity image which is corresponded to road slope, using v-disparity image and hough transform, Dijkstra algorithm. To detect free space, we detect u-line in u-disparity image which is a boundary line between free space and obstacle's region, using u-disparity image and dynamic programming. Free space is decided by detected v-line and u-line. The proposed algorithm is proven to be successful through experiments under various traffic scenarios.
In this paper, an effective method for reconstruction of stereoscopic image pair through the regularized adaptive disparity estimation is proposed. Although the conventional adaptive disparity window matching can sharply improve the PSNR of a reconstructed stereo image, but there still exist some problems of overlapping between the matching windows and disallocation of the matching windows, because the size of the matching window tend to changes adaptively in accordance with the magnitude of the feature values. In the proposed method, the problems relating to the conventional adaptive disparity estimation scheme can be solved and the predicted stereo image can be more effectively reconstructed by regularizing the extimated disparity vector with the neighboring disparity vectors. From the experimental results, it is found that the proposed algorithm show improvements the PSNR of the reconstructed right image by about 2.36${\sim}$2.76 dB, on average, compared with that of conventional algorithms.
변이공간영상(Disparity space image, DSI) 방법은 스테레오 영상간의 정합을 찾는 방법이다. 이 방법은 각 화소 단위로 변이값을 계산해 내는 장점이 있다. DSI 방법은 비용함수를 최소화시키는 정합을 찾는 방법이다. 이 비용함수에서 폐색영역비용 값과 정합 보상값을 경험적으로 정하여왔다. 본 논문에서는 변이공간영상 방법에서 폐색영역비용과 정합보상값이 영상 잡음과 물체와 배경간의 차이에 영향을 받는 것을 이론적으로 분석하였다.
In this paper, a real-time multiview video coding system using fast disparity estimation is proposed. In the multiview encoder, adaptive disparity-motion estimation (DME) for an effective 3-dimensional (3D) processing are proposed. That is, by adaptively predicting the mutual correlation between stereo images in the key-frame using the proposed algorithm, the bandwidth of stereo input images can be compressed to the level of a conventional 2D image and a predicted image also can be effectively reconstructed using a reference image and adaptive disparity vectors. Also, in multiview decoder, intermediate view reconstruction (IVR) using adaptive disparity search algorithm (DSA) for real-time multiview video processing is proposed. The proposed IVR can reduce a processing time of disparity estimation by selecting adaptively disparity search range. Accordingly, the proposed multiview video coding system is able to increase the efficiency of the coding rate and improve the resolution.
본 논문에서 우리는 시차공간영상 (disparity space image)을 이용한 새로운 스테레오 정합 방법을 제안한다. 본 논문에서는 실측 제어점 대신 영상 안에서 특징점을 추출하여 정합영역을 설정하였고, 간단한 비용행렬을 정의하였다. 그리고 정합 속도를 증가시키기 위해 화소 단위의 정합을 이용하였다. 화소 단위의 정합은 정합 속도는 향상시키지만, 주변 영역을 이용하지 않기 때문에 정합의 정확성이 낮아진다. 이러한 단점을 보완하기 위해 시차공간영상의 특성을 이용하여 정합경로를 확대시켜서 주변 영역을 최대한 이용하였다. 또한, 현재 위치에서 이전과 이후의 시차공간영상을 체적화하여 전후의 시차공간영상을 이용함으로써 정합의 정확도를 더욱 향상시키는 정합 보정 모듈을 추가하였다. 본 논문에서 제안된 알고리즘은 다양한 영상에 적용하여 실험하였고, 그 결과 제안된 방법의 우수한 성능을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.