• 제목/요약/키워드: disk-galaxies

검색결과 164건 처리시간 0.034초

Bar Formation and Enhancement of Star Formation in Disk Galaxies in Interacting Clusters

  • Yoon, Yongmin;Im, Myungshin
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.31.1-31.1
    • /
    • 2020
  • A merger or interaction between galaxy clusters is one of the most violent events in the universe. Thus, an interacting cluster is an optimum laboratory to understand how galaxy properties are influenced by a drastic change of the large-scale environment. Here, we present the observational evidence that bars in disk galaxies can form by cluster-cluster interaction and the bar formation is associated with star-formation enhancement. We investigated 105 galaxy clusters at 0.015

  • PDF

Investigating the accretion disk properties of young radio galaxies using the narrow-emission line diagnostics

  • 손동훈;우종학;;;;;김상철
    • 천문학회보
    • /
    • 제36권1호
    • /
    • pp.49.2-49.2
    • /
    • 2011
  • To investigate whether radio galaxies have systematically different accretion disk compared to radio-quiet AGN, we obtained high quality optical spectra for a sample of 22 young radio galaxies, using the KAST Double Spectrograph at the Lick 3-m telescope. Young radio galaxies are particularly useful since the age of the radio phenomena is comparable to that of accretion disk. Based on the optical emission-line diagnostics of narrow line region, which is thought to be photoionized by the nuclear radiation, we constrain the states of the accretion disk. In addition to strong emission lines, i.e., [O I], [O II], [O III], and [Ne III], we use the [Ar III] line to break the degeneracy between the ionization parameter and the SED shape. We find that young radio galaxies show systematically different emission line ratios compared to radio-quiet Type II AGN, suggesting that young radio galaxies probably have the power-law SED without a strong big blue bump. We will present the main results of the emission-line diagnostics.

  • PDF

SPH SIMULATIONS OF BARRED GALAXIES: DYNAMICAL EVOLUTION OF GASEOUS DISK

  • ANN HONG BAE;LEE HVUNG MOK
    • 천문학회지
    • /
    • 제33권1호
    • /
    • pp.1-17
    • /
    • 2000
  • We have performed extensive simulations of response of gaseous disk in barred galaxies using SPH method. The gravitational potential is assumed to be generated by disk, bulge, halo, and bar. The mass of gaseous disk in SPH simulation is assumed to be negligible compared to the stellar and dark mass component, and the gravitational potential generated by other components is fixed in time. The self-gravity of the gas is not considered in most simulations, but we have made a small set of simulations including the self-gravity of the gas. Non-circular component of velocity generated by the rotating, non-axisymmetric potential causes many interesting features. In most cases, there is a strong tendency of concentration of gas toward the central parts of the galaxy. The morphology of the gas becomes quite complex, but the general behavior can be understood in terms of simple linear approximations: the locations and number of Lindblad resonances play critical role in determining the general distribution of the gas. We present our results in the form of 'atlas' of artificial galaxies. We also make a brief comment on the observational implications of our calculations. Since the gaseous component show interesting features while the stellar component behaves more smoothly, high resolution mapping using molecular emission line for barred galaxies would be desirable.

  • PDF

CCD SURFACE PHOTOMETRY OF SPIRAL GALAXIES: BULGE MORPHOLOGY

  • Ann, Hong-Bae
    • 천문학회지
    • /
    • 제36권4호
    • /
    • pp.261-270
    • /
    • 2003
  • We have conducted a V-band CCD surface photometry of 68 disk galaxies to analyze the bulge morphology of nearby spirals. We classify bulges into four types according to their ellipticities and the misalignments between the major axis of the bulge and those of the disk and the bar: spherical, oblate, pseudo triaxial, and triaxial. We found that one third of the bulges are triaxial and they are preponderant in barred galaxies. The presence of the triaxial bulges in a significant fraction of unbarred galaxies as well as in barred galaxies might support the secular evolution hypothesis which postulates that the bar driven mass inflow leads to the formation of triaxial bulges and the destruction of bars when sufficient mass is accumulated in the central regions.

ARE GALACTIC WARPS INDUCED BY INTERGALACTIC FLOWS?

  • SANCHEZ-SALCEDO F. J.
    • 천문학회지
    • /
    • 제37권4호
    • /
    • pp.205-210
    • /
    • 2004
  • The interaction of disk galaxies with intergalactic winds has been invoked as a possible mechanism of the generation of galactic warps. Here we discuss conditions under which intergalactic flows can be relevant for warping field galaxies. Constraints include the heating of the outer disk, the level of asymmetry in the vertical distribution of the volume gas density, the angular frequency of the warp, the symmetry of galactic warps amplitude between the approaching and receding sides of the galaxy, and the speed of the intergalactic flow whether subsonic or supersonic. These constraints are discussed in this paper in reference to the proposal of Lopez-Corredoira et al. that warps can be a natural consequence of accretion flows onto the disk.

HCG10에 속한 나선은하 NGC 531, NGC 536, NGC 542의 VRI CCD 표면측광 (VRI SURFACE PHOTOMETRY OF THE SPIRAL GALAXIES NGC 531, NGC 536, AND NGC 542 IN HCG10)

  • 송우미;안홍배
    • 천문학논총
    • /
    • 제14권1호
    • /
    • pp.1-8
    • /
    • 1999
  • We performed VRI CCD surface photometry of three spiral galaxies of HCG10 in order to understand the effect of interactions in the compact group. The morphology of the largest member NGC 536 seems to be normal but its bulge is thought to be of an oblate spheroid. The central surface brightness of the disk of NGC 536 is much fainter than that of disks of nearby spiral galaxies. The morphologies of NGC 531 and NGG 542 appear to be affected by interactions which lead to a warped disk in NGC 531 and a slightly bent disk in NGC 542. NGC 531 have a boxy bulge and a Freeman Type II disk both of which strongly suggest the presence of a bar in the galaxy. There is a break in the slope of the luminosity profile of NGC 542 which is dominated by the disk component.

  • PDF

LUMINOSITY PROFILES OF dE AND dS0 GALAXIES IN THE VIRGO CLUSTER

  • Kim, Kyoo-Hyun;Lee, Kyung-Hoon;Ann, Hong-Bae
    • 천문학회지
    • /
    • 제39권3호
    • /
    • pp.57-71
    • /
    • 2006
  • We investigated the structural parameters of a sample of 30 dwarf galaxies(15 dEs and 15 dS0s) in the Virgo Cluster using i-band images from the Sloan Digital Sky Survey Data Release 4. Among 28 galaxies for which surface brightness profiles were derived from ellipse fittings, 23 galaxies had a single component that was adequately described by a generalized $S\acute{e}rsic$ function with a shape parameter ranging from n=0.5 to 2, while 5 galaxies(2 dEs and 3 dS0s) had bulge and disk components that were fitted by a generalized $S\acute{e}rsic$ function and an exponential function, respectively. Since the majority of dwarf galaxies in the present sample had a single component, it seems likely that genuine dS0 galaxies that have disk and bulge components are quite rare in the Virgo Cluster. The similarity in structural parameters of genuine dS0 galaxies in the Virgo Cluster with those of Magellanic-type galaxies implies that the progenitors of dwarf lenticular galaxies in the Virgo Cluster were most likely Magellanic-type galaxies if dS0s are harassed late-type spirals.

FORMATION OF INTERMEDIATE-SCALE STRUCTURES IN SPIRAL GALAXIES

  • KIM WOONG-TAE
    • 천문학회지
    • /
    • 제37권4호
    • /
    • pp.243-248
    • /
    • 2004
  • Disk galaxies abound with intermediate-scale structures such as OB star complexes, giant clouds, and dust spurs in a close geometrical association with spiral arms. Various mechanisms have been proposed as candidates for their origin, but a comprehensive theory should encompass fundamental physical agents such as self-gravity, magnetic fields, galactic differential rotation, and spiral arms, all of which are known to exist in disk galaxies. Recent numerical simulations incorporating all these physical processes show that magneto-Jeans instability (MJI), in which magnetic tension resists the stabilizing Coriolis force of galaxy rotation, is much more powerful than swing-amplification or the Parker instability in forming self-gravitating intermediate-scale structures. The MJI occurring in shearing and expanding flows off spiral arms rapidly forms structures elongated along the direction perpendicular to the arms, remarkably similar to dust spurs seen in HST images of spiral galaxies. In highly nonlinear stages, these spurs fragment to form bound clumps, possibly evolving into bright arm and interarm H II regions, suggesting that all these intermediate-scale structures in spiral galaxies probably share a common dynamical origin.

A STUDY OF A TIDALLY INTERACTING BCD PAIR: ESO 435-IG20 AND ESO435-IG16

  • KIM, JINHYUB;SUNG, EON-CHANG;CHUNG, AEREE;STAVELEY-SMITH, LISTER
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.513-515
    • /
    • 2015
  • We investigate $H\small{I}$ data for a pair of blue compact dwarf galaxies (BCDs), ESO 435-IG20 and ESO 435-IG16, obtained with the Australia Telescope Compact Array. The outer $H\small{I}$ disk is highly disturbed and asymmetric in both galaxies showing a gas tail and/or a broad/extended gas disk on only one side. Based on their low-density surroundings and small projected distance (<80 kpc) at a similar redshift, we conclude that tidal interaction between these two BCDs is responsible for the morphological and kinematical peculiarities in $H\small{I}$. We also investigate their star formation rates using $H{\alpha}$ and UV imaging data to probe their interaction history.

Barred Galaxies Are More Abundant in Interacting Clusters: Bar Formation by Cluster-Cluster Interactions

  • Yoon, Yongmin;Im, Myungshin;Lee, Seong-Kook;Lee, Gwang-Ho;Lim, Gu
    • 천문학회보
    • /
    • 제43권2호
    • /
    • pp.35.1-35.1
    • /
    • 2018
  • Bars are commonly found in disk galaxies. However, how bars form is yet unclear. There are two common pictures for the bar formation mechanism. Bars form through a physical process inherent in galaxies, or through and external process like galaxy-galaxy interaction. In this paper, we present the observational evidence that bars can form from another channel, namely a cluster-cluster interaction. We examined 105 galaxy clusters at 0.015

  • PDF