• Title/Summary/Keyword: disease progression

Search Result 1,285, Processing Time 0.029 seconds

Targeting Cellular Antioxidant Enzymes for Treating Atherosclerotic Vascular Disease

  • Kang, Dong Hoon;Kang, Sang Won
    • Biomolecules & Therapeutics
    • /
    • v.21 no.2
    • /
    • pp.89-96
    • /
    • 2013
  • Atherosclerotic vascular dysfunction is a chronic inflammatory process that spreads from the fatty streak and foam cells through lesion progression. Therefore, its early diagnosis and prevention is unfeasible. Reactive oxygen species (ROS) play important roles in the pathogenesis of atherosclerotic vascular disease. Intracellular redox status is tightly regulated by oxidant and antioxidant systems. Imbalance in these systems causes oxidative or reductive stress which triggers cellular damage or aberrant signaling, and leads to dysregulation. Paradoxically, large clinical trials have shown that non-specific ROS scavenging by antioxidant vitamins is ineffective or sometimes harmful. ROS production can be locally regulated by cellular antioxidant enzymes, such as superoxide dismutases, catalase, glutathione peroxidases and peroxiredoxins. Therapeutic approach targeting these antioxidant enzymes might prove beneficial for prevention of ROS-related atherosclerotic vascular disease. Conversely, the development of specific antioxidant enzyme-mimetics could contribute to the clinical effectiveness.

Clinical Approach to Children with Proteinuria

  • Jang, Kyung Mi;Cho, Min Hyun
    • Childhood Kidney Diseases
    • /
    • v.21 no.2
    • /
    • pp.53-60
    • /
    • 2017
  • Proteinuria is common in pediatric and adolescent patients. Proteinuria is defined as urinary protein excretion at levels higher than $100-150mg/m^2/day$ in children. It can be indicative of normal or benign conditions as well as numerous types of severe underlying renal or systemic disease. The school urine screening program has been conducted in Korea since 1998. Since then, numerous patients with normal or benign proteinuria as well as early stage renal diseases have been referred to the hospital. Benign proteinuria includes orthostatic proteinuria and transient proteinuria. Most causes of proteinuria can be categorized into 3 types: 1) overflow, 2) tubular, and 3) glomerular. Although treatment should be directed at the underlying cause of the proteinuria, prompt evaluation, diagnosis, and long-term monitoring of these pediatric patients can prevent potential progression of the underlying disease process. This article provides an overview of proteinuria: its causes, methods of assessment, and algorithmic suggestions to differentiate benign from pathologic renal disease.

Update of Therapeutic Clinical Trials for Amyotrophic Lateral Sclerosis (근위축측삭경화증에 대한 치료약물 임상시험 현황)

  • Kim, Nam-Hee;Lee, Min Oh
    • Annals of Clinical Neurophysiology
    • /
    • v.17 no.1
    • /
    • pp.1-16
    • /
    • 2015
  • Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that is characterized by progressive death of motor neurons in the cortex, brainstem, and spinal cord. Until now, many treatment strategies have been tested in ALS, but so far only Riluzole has shown efficacy of slightly slowing disease progression. The pathophysiological mechanisms underlying ALS are multifactorial, with a complex interaction between genetic factors and molecular pathways. Other motor neuron disease such as spinal muscular atrophy (SMA) and spinobulbar muscular atrophy (SBMA) are also progressive neurodegenerative disease with loss of motor neuron as ALS. This common thread of motor neuron loss has provided a target for the development of therapies for these motor neuron diseases. A better understanding of these pathogenic mechanisms and the potential pathological relationship between the various cellular processes have suggested novel therapeutic approaches, including stem cell and genetics-based strategies, providing hope for feasible treatment of ALS.

Familial Juvenile Hyperuricemic Nephropathy and Uromodulin Gene Mutation

  • Lee, Young-Ki;Lee, Dong Hun;Noh, Jung-Woo
    • Journal of Genetic Medicine
    • /
    • v.10 no.1
    • /
    • pp.7-12
    • /
    • 2013
  • Familial Juvenile hyperuricemic nephropathy (FJHN) is a rare autosomal dominant disorder, characterized by early onset of hyperuricemia, gout and progressive kidney disease. Hyperuricemia prior to renal impairment and decreased fractional excretion of uric acid are hallmarks of FJHN. Renal dysfunction gradually appears early in life and results in end-stage renal disease usually between the ages of 20 and 70 years. FJHN is mostly caused by mutations in the uromodulin gene located at 16p12. The course of FJHN is highly variable. Treatment includes management for hyperuricemia, gout and progressive kidney disease. Individuals with gout have been usually treated with allopurinol. But controversy exists as to whether uric acid lowering therapy prevents the progression of chronic kidney disease.

Imaging of Dopaminergic System in Movement Disorders (이상운동질환에서의 도파민 신경계 영상)

  • Kim, Yu-Kyeong;Kim, Sang-Eun
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.2
    • /
    • pp.132-140
    • /
    • 2007
  • Parkinson's disease is a common neurodegenerative disorder that is mainly caused by dopaminergic neuron loss in the substantia nigra. Several radiopharmaceutics have been developed to evaluate the integrity of dopaminergic neuronal system. In vivo PET and SPECT imaging of presynaptic dopamine imaing are already applied to Parkinson's disease and other parkinsonism, and can demonstrate the dopaminergic dysfunction. This review summarized the use of the presynaptic dopaminergic imaging in PD as biomarkers in evaluation of disease progression as well as in diagnosis of PD.

Development of ML and IoT Enabled Disease Diagnosis Model for a Smart Healthcare System

  • Mehra, Navita;Mittal, Pooja
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.1-12
    • /
    • 2022
  • The current progression in the Internet of Things (IoT) and Machine Learning (ML) based technologies converted the traditional healthcare system into a smart healthcare system. The incorporation of IoT and ML has changed the way of treating patients and offers lots of opportunities in the healthcare domain. In this view, this research article presents a new IoT and ML-based disease diagnosis model for the diagnosis of different diseases. In the proposed model, vital signs are collected via IoT-based smart medical devices, and the analysis is done by using different data mining techniques for detecting the possibility of risk in people's health status. Recommendations are made based on the results generated by different data mining techniques, for high-risk patients, an emergency alert will be generated to healthcare service providers and family members. Implementation of this model is done on Anaconda Jupyter notebook by using different Python libraries in it. The result states that among all data mining techniques, SVM achieved the highest accuracy of 0.897 on the same dataset for classification of Parkinson's disease.

Diagnosis of Benign Monomelic Amyotrophy (양성 국소 근위축증의 진단)

  • Byun, Justin;Bang, Meyong Hwan;Park, Jung Hyun
    • Clinical Pain
    • /
    • v.19 no.2
    • /
    • pp.101-105
    • /
    • 2020
  • Benign monomelic amyotrophy (BMA) is a benign motor neuron disease in which amyotrophic change is confined to either the upper or the lower extremities. Numerous cases of BMA have been reported from Japan and India. However, only a few cases have been reported from other regions, including South Korea. Here we report a rare case of late-onset BMA in Korean male using conventional diagnostic approach with magnetic resonance imaging and electromyography. The patient received ten sessions of manual therapy, which focused on strengthening of the left ankle. At two-month follow up, weakness was still isolated to the patient's left ankle. There were no signs of disease progression.

Tolvaptan: a possible preemptive treatment option in children with autosomal dominant polycystic kidney disease?

  • Hee Sun Beak;Min Hyun Cho
    • Childhood Kidney Diseases
    • /
    • v.27 no.2
    • /
    • pp.76-81
    • /
    • 2023
  • Tolvaptan is a highly selective vasopressin receptor 2 antagonist that regulates cyclic adenosine monophosphate levels to inhibit both epithelial cell proliferation and chloride ion excretion, two mechanisms known to induce cyst expansion in autosomal dominant polycystic kidney disease (ADPKD). Tolvaptan is currently the preferred treatment of rapidly progressive disease ADPKD in adult patients; however, since cyst formation in ADPKD begins early in life, (frequently in utero), and significant disease progression with cyst expansion occurs in the first decade, tolvaptan may be advantageous as a preemptive treatment in children with ADPKD. Tolvaptan has already been used to successfully treat refractory edema or hyponatremia in children; this literature review provides insight into the biochemical basis of its action to contextualize its use in the pediatric population.

Characterization of the Alzheimer's disease-related network based on the dynamic network approach (동적인 개념을 적용한 알츠하이머 질병 네트워크의 특성 분석)

  • Kim, Man-Sun;Kim, Jeong-Rae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.6
    • /
    • pp.529-535
    • /
    • 2015
  • Biological networks have been handled with the static concept. However, life phenomena in cells occur depending on the cellular state and the external environment, and only a few proteins and their interactions are selectively activated. Therefore, we should adopt the dynamic network concept that the structure of a biological network varies along the flow of time. This concept is effective to analyze the progressive transition of the disease. In this paper, we applied the proposed method to Alzheimer's disease to analyze the structural and functional characteristics of the disease network. Using gene expression data and protein-protein interaction data, we constructed the sub-networks in accordance with the progress of disease (normal, early, middle and late). Based on this, we analyzed structural properties of the network. Furthermore, we found module structures in the network to analyze the functional properties of the sub-networks using the gene ontology analysis (GO). As a result, it was shown that the functional characteristics of the dynamics network is well compatible with the stage of the disease which shows that it can be used to describe important biological events of the disease. Via the proposed approach, it is possible to observe the molecular network change involved in the disease progression which is not generally investigated, and to understand the pathogenesis and progression mechanism of the disease at a molecular level.

Prognostic Significance of Sirtuins Expression in Papillary Thyroid Carcinoma

  • Kang, Yea Eun;Shong, Minho;Kim, Jin Man;Koo, Bon Seok
    • International journal of thyroidology
    • /
    • v.11 no.2
    • /
    • pp.143-151
    • /
    • 2018
  • Background and Objectives: Sirtuins (SIRTs) play important roles in cellular and organismal homeostasis. They have distinct gene expression patterns in various cancers; however, the relationship between SIRT expression and the progression of thyroid cancer is unclear. We investigated the expression of SIRTs in patients with papillary thyroid carcinoma (PTC) and their role as biomarkers for predicting the aggressiveness of this disease. Materials and Methods: We used immunohistochemical staining to evaluate the expression of SIRT1 and SIRT3 in tumor specimens from 270 patients with PTC. We also evaluated the potential association between SIRT expression and diverse clinicopathological features. Results: High SIRT1 expression was negatively correlated with lymphovascular invasion, central lymph node metastasis, and lateral lymph node metastasis. Multivariate analyses revealed that high SIRT1 expression was a negative independent risk factor for lateral lymph node metastasis. By contrast, high SIRT3 expression was positively correlated with locoregional recurrence. Interestingly, when patients were grouped by tumor SIRT expression patterns, the group with low SIRT1 expression and high SIRT3 expression was correlated with more aggressive cancer phenotypes including central lymph node metastasis and lateral lymph node metastasis. Conclusion: Our results suggest that SIRTs play dual roles in tumor progression, and the combination of decreased SIRT1 expression and increased SIRT3 expression is significantly associated with a poor prognosis in patients with PTC.