International Journal of Computer Science & Network Security
/
v.22
no.7
/
pp.1-12
/
2022
The current progression in the Internet of Things (IoT) and Machine Learning (ML) based technologies converted the traditional healthcare system into a smart healthcare system. The incorporation of IoT and ML has changed the way of treating patients and offers lots of opportunities in the healthcare domain. In this view, this research article presents a new IoT and ML-based disease diagnosis model for the diagnosis of different diseases. In the proposed model, vital signs are collected via IoT-based smart medical devices, and the analysis is done by using different data mining techniques for detecting the possibility of risk in people's health status. Recommendations are made based on the results generated by different data mining techniques, for high-risk patients, an emergency alert will be generated to healthcare service providers and family members. Implementation of this model is done on Anaconda Jupyter notebook by using different Python libraries in it. The result states that among all data mining techniques, SVM achieved the highest accuracy of 0.897 on the same dataset for classification of Parkinson's disease.
Bong-geun Jang;Youngsun Kwon;Sunyoung Park;Gunwoo Lee;Hyeyeon Kang;Jeom-Yong Kim
CELLMED
/
v.13
no.14
/
pp.14.1-14.9
/
2023
Administration of Scopolamine can be considered a psychopharmacological model of Alzheimer's disease (AD). We made an animal model of Alzheimer's disease (AD) by administering Scopolamine to Blab/c mice. In this study, we investigated the effects of Resplex Alpha on memory impairment and cognitive function in mice in a mouse animal model of Scopolamine-induced memory impairment. Through Y-mazed and passive avoidance behavioral assays, we observed that Resplex Alpha recovered Scopolamine-induced short-term memory and cognitive functions. The results of our study imply that Resplex Alpha may be beneficial in the prevention of Alzheimer's disease (AD).
Objectives: This study aimed to examine the effects of dietary protein intake and quality on periodontal disease in Korean adults. Methods: The data used for analysis were obtained from the 7th Korean National Health and Nutrition Examination Survey (2016-2018). Data were analyzed using chi-square and t-test. Additionally, multiple logistic regression analysis was performed to assess the association between dietary protein intake and quality and periodontal disease. Statistical significance level was set at <0.05. Results: Multiple logistic regression analysis of dietary protein intake and periodontal disease in the model adjusted for socioeconomic factors showed that were significantly related to the Q1 (odds ratio [OR]: 1.18, 95% confidence interval [CI]: 1.01-1.39). However, this correlation was not significant in the model in which all variables were corrected. Moreover, analysis of the dietary protein quality and periodontal disease in model 4, which was adjusted for socioeconomic variables, showed that were significantly related to the low score (OR: 1.13, 95% CI: 1.00-1.27). Conclusions: The results showed a significant association between periodontal disease and poor intake and quality of dietary protein in the Korean adult population.
Journal of the Korean Data and Information Science Society
/
v.28
no.2
/
pp.297-307
/
2017
The epidemic model is used to model the spread of disease and to control the disease. In this research, we utilize SEIR model which is one of applications the SIR model that incorporates Exposed step to the model. The SEIR model assumes that a people in the susceptible contacted infected moves to the exposed period. After staying in the period, the infectee tends to sequentially proceed to the status of infected, recovered, and removed. This type of infection can be used for research in cases where there is a latency period after infectious disease. In this research, we collected respiratory infectious disease data for the Middle East Respiratory Syndrome Coronavirus (MERSCoV). Assuming that the spread of disease follows a stochastic process rather than a deterministic one, we utilized the Poisson process for the variation of infection and applied epidemic model to the stochastic chemical reaction model. Using observed pandemic data, we estimated three parameters in the SIER model; exposed rate, transmission rate, and recovery rate. After estimating the model, we applied the fitted model to the explanation of spread disease. Additionally, we include a process for generating the Exposed trajectory during the model estimation process due to the lack of the information of exact trajectory of Exposed.
Journal of Physiology & Pathology in Korean Medicine
/
v.31
no.2
/
pp.138-144
/
2017
The pharmacological rationale of Agastache rugosa (AR) or Pogostemon cablin (PC), which have been used in traditional Korean medicine to treat dampness pattern or syndrome in gastrointestinal tract, was investigated on the gastrointestinal disorders. In-vivo model studies that examined the effect on the gastrointestinal disorders of AR or PC were collected. They were classified into disease-induced in-vivo models or non-disease in vivo models. The target disease, animal species, induction method, administration, and outcomes (changes in morphological and histological parameter, or blood and fluid) of each study were analyzed. The therapeutic mechanism of AR or PC extract was evaluated by the induced diseases and the changes in outcomes. There were contradictory reports on gastrointestinal motility of AR or PC in disease non-disease in-vivo model. AR or PC inhibited gastrointestinal motility in disease model of increased gastrointestinal motility, while promoted motility in disease model of decreased gastrointestinal motility. AR or PC also inhibited inflammatory changes in gastrointestinal inflammation model. These results suggest that the bidirectional regulation of gastrointestinal motility and the improvement of gastrointestinal inflammatory disorders might underpin traditional therapeutic effect of AR or PC, that is effect to resolve dampness of gastrointestinal tract.
In this study, we propose a novel remote health monitoring system to accurately predict Parkinson's disease severity using a signomial regression method. In order to characterize the Parkinson's disease severity, sixteen biomedical voice measurements associated with symptoms of the Parkinson's disease, are used to develop the telemonitoring model for early detection of the Parkinson's disease. The proposed approach could be utilized for not only prediction purposes, but also interpretation purposes in practice, providing an explicit description of the resulting function in the original input space. Compared to the accuracy performance with the existing methods, the proposed algorithm produces less error rate for predicting Parkinson's disease severity.
Kidney disease affects a significant portion of the global population, yet effective therapies are lacking despite advancements in identifying genetic causes. This limitation can be attributed to the absence of adequate in vitro models that accurately mimic human kidney disease, hindering targeted therapeutic development. However, the emergence of human induced pluripotent stem cells (PSCs) and the development of organoids using them have opened up a way to model kidney development and disease in humans, as well as validate the effects of new drugs. To fully leverage their capabilities in these fields, it is crucial for kidney organoids to closely resemble the structure and functionality of adult human kidneys. In this review, we aim to discuss the potential of using human PSCs or adult kidney stem cell-derived kidney organoids to model genetic kidney disease and renal cancer.
Background: Accurate assessment of disease progression requires proper understanding of natural disease process which is often hidden and unobservable. For this purpose, disease status should be clearly detected. But in most diseases it is not possible to detect such status. This study, therefore, aims to present a model which both investigates the unobservable disease process and considers the error probability in diagnosis of disease states. Materials and Methods: Data from 330 patients with gastric cancer undergoing surgery at the Iran Cancer Institute from 1995 to 1999 were analyzed. Moreover, to estimate and assess the effect of demographic, diagnostic and clinical factors as well as medical and post-surgical variables on transition rates and the probability of misdiagnosis of relapse, a hidden Markov multi-state model was employed. Results: Classification errors of patients in alive state without a relapse ($e_{21}$) and with a relapse ($e_{12}$) were 0.22 (95% CI: 0.04-0.63) and 0.02 (95% CI: 0.00-0.09), respectively. Only variables of age and number of renewed treatments affected misdiagnosis of relapse. In addition, patient age and distant metastasis were among factors affecting the occurrence of relapse (state1${\rightarrow}$state2) while the number of renewed treatments and the type and extent of surgery had a significant effect on death hazard without relapse (state2${\rightarrow}$state3)and death hazard with relapse (state2${\rightarrow}$state3). Conclusions: A hidden Markov multi-state model provides the possibility of estimating classification error between different states of disease. Moreover, based on this model, factors affecting the probability of this error can be identified and researchers can be helped with understanding the mechanisms of classification error.
The Journal of Korean Academic Society of Nursing Education
/
v.8
no.1
/
pp.61-71
/
2002
purpose : The purpose of this study was to find out the influencing factors of smoking-cessation behavior of patients with coronary heart disease and to suggest the model of smoking-cessation behavior which was based on the relationship between influencing factors and then to test its fitness empirically. method : This study was based on the Theory of Reasoned Action and a hypothetical model was constructed with fifteen paths in consideration of main predictive factors of smoking-cessation behavior such as biological factor, disease-related characteristics, self-efficacy, supportive factor, environmental factor, disease-related perception factor, intention-to-quit, and psychological factor. The validity of a smoking- cessation model was tested to 264 patients with coronary heart disease by using SPSS 8.0 and Window LISREL 8.12a. results : 1. Seven of the 15 paths of smoking-cessation behavior proved to be significant. 2. The final model excluded three paths in the hypothetical model was demonstrated to be improved by $x^2$=44.31 (df=38, p=.22), Goodness of Fit Index (GFI)=.98, Adjusted Goodness of Fit Index (AGFI)=.96, Non-Normed Fit Index(NNFI)=1.00, Normed Fit Index(NFI)=1.00, and Root Mean Square Residual(RMR)=.24. 3.The smoking-cessation behavior was influenced directly by biological factor, self-efficacy, supportive factor, environmental factor, intention-to-quit, and psychological factor. The smoking-cessation behavior was accounted for 82% of variance by these factors. conclusion : although the adolescents' smoking behavior can be predicted by only smoking intention, it is hard to predict the adults' smoking-cessation behavior by only this factor. Therefore, intention-to-quit, self-efficacy, supportive factor should be improved because these are promotive factors for smoking-cessation behavior. Biological factor, environmental factor, and psychological factor are inhibitive factors, so nicotine replacement therapy is helpful to the high nicotine-dependents, and ex-smokers avoid other smokers in their environment and also patients should learn and practice the stress coping-skills.
Background: Cerebrovascular disease is included in four major diseases and is a disease that has high rates of prevalence and mortality around the world. Moreover, it is a disease that requires a high cost for long-term hospitalization and treatment. This study aims to figure out the correlation between grip strength, which was presented as a simple, cost-effective, and relevant predictor of cerebrovascular disease, and cerebrovascular disease based on the results of a prior study. And furthermore, our study compared model suitability of the model to measuring grip strength and relative grip strength as a predictor of cerebrovascular disease to improve the quality of cerebrovascular disease's predictor. Methods: This study conducted an analysis based on the generalized linear mixed model using the data from the Korea Longitudinal Study of Ageing from 2006 to 2016. The research subjects consisted of 9,132 middle old age people aged 45 years or older at baseline with no missing information of education level, gender, marital status, residential region, type of national health insurance, self-related health, smoking status, alcohol use, and economic activity. The grip strength was calculated the average which measured 4 times (both hands twice), and the relative grip force was divided by the body mass index as a variable considering the anthropometric figure that affects the cerebrovascular disease and the grip strength. Cerebrovascular diseases, a dependent variable, were investigated based on experiences diagnosed by doctors. Results: An analysis of the association between grip strength and found that about 0.972 (odds ratio [OR], 0.972; 95% confidence interval [CI], 0.963-0.981) was the incidence of cerebral vascular disease as grip strength increased by one unit increase and the association between relative grip strength and cerebrovascular disease found that about 0.418 (OR, 0.418; 95% CI, 0.342-0.511) was the incidence of cerebral vascular disease as relative grip strength increased by unit. In addition, the model suitability of the model for each grip strength and relative grip strength was 11,193 and 11,156, which means relative grip strength is the better application to the predictor of cerebrovascular diseases, irrespective of other variables. Conclusion: The results of this study need to be carefully examined and validated in applying relative grip strength to improve the quality of predictors of cerebrovascular diseases affecting high mortality and prevalence.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.